IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-53405-z.html
   My bibliography  Save this article

Individually addressed entangling gates in a two-dimensional ion crystal

Author

Listed:
  • Y.-H. Hou

    (Tsinghua University)

  • Y.-J. Yi

    (Tsinghua University)

  • Y.-K. Wu

    (Tsinghua University
    Hefei National Laboratory)

  • Y.-Y. Chen

    (Tsinghua University)

  • L. Zhang

    (Tsinghua University)

  • Y. Wang

    (Tsinghua University
    HYQ Co. Ltd.)

  • Y.-L. Xu

    (Tsinghua University)

  • C. Zhang

    (Tsinghua University
    HYQ Co. Ltd.)

  • Q.-X. Mei

    (HYQ Co. Ltd.)

  • H.-X. Yang

    (HYQ Co. Ltd.)

  • J.-Y. Ma

    (HYQ Co. Ltd.)

  • S.-A. Guo

    (Tsinghua University)

  • J. Ye

    (Tsinghua University)

  • B.-X. Qi

    (Tsinghua University)

  • Z.-C. Zhou

    (Tsinghua University
    Hefei National Laboratory)

  • P.-Y. Hou

    (Tsinghua University
    Hefei National Laboratory)

  • L.-M. Duan

    (Tsinghua University
    Hefei National Laboratory
    New Cornerstone Science Laboratory)

Abstract

Two-dimensional (2D) ion crystals may represent a promising path to scale up qubit numbers for ion trap quantum information processing. However, to realize universal quantum computing in this system, individually addressed high-fidelity two-qubit entangling gates still remain challenging due to the inevitable micromotion of ions in a 2D crystal as well as the technical difficulty in 2D addressing. Here we demonstrate two-qubit entangling gates between any ion pairs in a 2D crystal of four ions. We use symmetrically placed crossed acousto-optic deflectors (AODs) to drive Raman transitions and achieve an addressing crosstalk error below 0.1%. We design and demonstrate a gate sequence by alternatingly addressing two target ions, making it compatible with any single-ion addressing techniques without crosstalk from multiple addressing beams. We further examine the gate performance versus the micromotion amplitude of the ions and show that its effect can be compensated by a recalibration of the laser intensity without degrading the gate fidelity. Our work paves the way for ion trap quantum computing with hundreds to thousands of qubits on a 2D ion crystal.

Suggested Citation

  • Y.-H. Hou & Y.-J. Yi & Y.-K. Wu & Y.-Y. Chen & L. Zhang & Y. Wang & Y.-L. Xu & C. Zhang & Q.-X. Mei & H.-X. Yang & J.-Y. Ma & S.-A. Guo & J. Ye & B.-X. Qi & Z.-C. Zhou & P.-Y. Hou & L.-M. Duan, 2024. "Individually addressed entangling gates in a two-dimensional ion crystal," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53405-z
    DOI: 10.1038/s41467-024-53405-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-53405-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-53405-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sepehr Ebadi & Tout T. Wang & Harry Levine & Alexander Keesling & Giulia Semeghini & Ahmed Omran & Dolev Bluvstein & Rhine Samajdar & Hannes Pichler & Wen Wei Ho & Soonwon Choi & Subir Sachdev & Marku, 2021. "Quantum phases of matter on a 256-atom programmable quantum simulator," Nature, Nature, vol. 595(7866), pages 227-232, July.
    2. Akito Noiri & Kenta Takeda & Takashi Nakajima & Takashi Kobayashi & Amir Sammak & Giordano Scappucci & Seigo Tarucha, 2022. "Fast universal quantum gate above the fault-tolerance threshold in silicon," Nature, Nature, vol. 601(7893), pages 338-342, January.
    3. Daniel Barredo & Vincent Lienhard & Sylvain Léséleuc & Thierry Lahaye & Antoine Browaeys, 2018. "Synthetic three-dimensional atomic structures assembled atom by atom," Nature, Nature, vol. 561(7721), pages 79-82, September.
    4. D. Kielpinski & C. Monroe & D. J. Wineland, 2002. "Architecture for a large-scale ion-trap quantum computer," Nature, Nature, vol. 417(6890), pages 709-711, June.
    5. Joseph W. Britton & Brian C. Sawyer & Adam C. Keith & C.-C. Joseph Wang & James K. Freericks & Hermann Uys & Michael J. Biercuk & John J. Bollinger, 2012. "Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins," Nature, Nature, vol. 484(7395), pages 489-492, April.
    6. Xing Rong & Jianpei Geng & Fazhan Shi & Ying Liu & Kebiao Xu & Wenchao Ma & Fei Kong & Zhen Jiang & Yang Wu & Jiangfeng Du, 2015. "Experimental fault-tolerant universal quantum gates with solid-state spins under ambient conditions," Nature Communications, Nature, vol. 6(1), pages 1-7, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matthew J. O’Rourke & Garnet Kin-Lic Chan, 2023. "Entanglement in the quantum phases of an unfrustrated Rydberg atom array," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Katrina Barnes & Peter Battaglino & Benjamin J. Bloom & Kayleigh Cassella & Robin Coxe & Nicole Crisosto & Jonathan P. King & Stanimir S. Kondov & Krish Kotru & Stuart C. Larsen & Joseph Lauigan & Bri, 2022. "Assembly and coherent control of a register of nuclear spin qubits," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Spencer D. Fallek & Vikram S. Sandhu & Ryan A. McGill & John M. Gray & Holly N. Tinkey & Craig R. Clark & Kenton R. Brown, 2024. "Rapid exchange cooling with trapped ions," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Hu, Jie-Ru & Zhang, Zuo-Yuan & Liu, Jin-Ming, 2024. "Implementation of three-qubit Deutsch-Jozsa algorithm with pendular states of polar molecules by optimal control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).
    5. Lari, B. & Chung, W.S. & Hassanabadi, H., 2024. "Quantum gates based on two strongly coupled harmonic oscillators in thermal non-equilibrium conditions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
    6. Brian Paquelet Wuetz & Merritt P. Losert & Sebastian Koelling & Lucas E. A. Stehouwer & Anne-Marije J. Zwerver & Stephan G. J. Philips & Mateusz T. Mądzik & Xiao Xue & Guoji Zheng & Mario Lodari & Ser, 2022. "Atomic fluctuations lifting the energy degeneracy in Si/SiGe quantum dots," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    7. Ruoqin Zhang & Xichuan Zhao & Jinzhi Li & Di Zhou & Honglian Guo & Zhi-yuan Li & Feng Li, 2024. "Programmable photoacoustic patterning of microparticles in air," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    8. Isaiah Hull & Or Sattath & Eleni Diamanti & Göran Wendin, 2024. "Quantum Technology for Economists," Contributions to Economics, Springer, number 978-3-031-50780-9, January.
    9. Luheng Zhao & Michael Dao Kang Lee & Mohammad Mujahid Aliyu & Huanqian Loh, 2023. "Floquet-tailored Rydberg interactions," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    10. Jin Ming Koh & Tommy Tai & Ching Hua Lee, 2024. "Realization of higher-order topological lattices on a quantum computer," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    11. Giacomo Bighin & Tilman Enss & Nicolò Defenu, 2024. "Universal scaling in real dimension," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    12. Shankar G. Menon & Noah Glachman & Matteo Pompili & Alan Dibos & Hannes Bernien, 2024. "An integrated atom array-nanophotonic chip platform with background-free imaging," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    13. L. Feng & Y.-Y. Huang & Y.-K. Wu & W.-X. Guo & J.-Y. Ma & H.-X. Yang & L. Zhang & Y. Wang & C.-X. Huang & C. Zhang & L. Yao & B.-X. Qi & Y.-F. Pu & Z.-C. Zhou & L.-M. Duan, 2024. "Realization of a crosstalk-avoided quantum network node using dual-type qubits of the same ion species," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    14. Matthias Künne & Alexander Willmes & Max Oberländer & Christian Gorjaew & Julian D. Teske & Harsh Bhardwaj & Max Beer & Eugen Kammerloher & René Otten & Inga Seidler & Ran Xue & Lars R. Schreiber & He, 2024. "The SpinBus architecture for scaling spin qubits with electron shuttling," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    15. Grigory E. Astrakharchik & Luis A. Peña Ardila & Krzysztof Jachymski & Antonio Negretti, 2023. "Many-body bound states and induced interactions of charged impurities in a bosonic bath," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    16. S. K. Kanungo & J. D. Whalen & Y. Lu & M. Yuan & S. Dasgupta & F. B. Dunning & K. R. A. Hazzard & T. C. Killian, 2022. "Realizing topological edge states with Rydberg-atom synthetic dimensions," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    17. M. Akhtar & F. Bonus & F. R. Lebrun-Gallagher & N. I. Johnson & M. Siegele-Brown & S. Hong & S. J. Hile & S. A. Kulmiya & S. Weidt & W. K. Hensinger, 2023. "A high-fidelity quantum matter-link between ion-trap microchip modules," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    18. Marcello Calvanese Strinati & Claudio Conti, 2022. "Multidimensional hyperspin machine," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    19. Pengfei Wang & Hyukjoon Kwon & Chun-Yang Luan & Wentao Chen & Mu Qiao & Zinan Zhou & Kaizhao Wang & M. S. Kim & Kihwan Kim, 2024. "Snapshotting quantum dynamics at multiple time points," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    20. Brian Paquelet Wuetz & Davide Degli Esposti & Anne-Marije J. Zwerver & Sergey V. Amitonov & Marc Botifoll & Jordi Arbiol & Amir Sammak & Lieven M. K. Vandersypen & Maximilian Russ & Giordano Scappucci, 2023. "Reducing charge noise in quantum dots by using thin silicon quantum wells," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53405-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.