IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-48163-x.html
   My bibliography  Save this article

Mitoribosome structure with cofactors and modifications reveals mechanism of ligand binding and interactions with L1 stalk

Author

Listed:
  • Vivek Singh

    (Stockholm University)

  • Yuzuru Itoh

    (Stockholm University
    University of Tokyo)

  • Samuel Del’Olio

    (University of Miami Miller School of Medicine)

  • Asem Hassan

    (Northeastern University
    Northeastern University)

  • Andreas Naschberger

    (Stockholm University
    King Abdullah University of Science and Technology)

  • Rasmus Kock Flygaard

    (Aarhus University)

  • Yuko Nobe

    (Tokyo Metropolitan University)

  • Keiichi Izumikawa

    (Meiji Pharmaceutical University)

  • Shintaro Aibara

    (Stockholm University)

  • Juni Andréll

    (Karolinska Institutet)

  • Paul C. Whitford

    (Northeastern University
    Northeastern University)

  • Antoni Barrientos

    (University of Miami Miller School of Medicine
    University of Miami Miller School of Medicine
    University of Miami Miller School of Medicine)

  • Masato Taoka

    (Tokyo Metropolitan University)

  • Alexey Amunts

    (Stockholm University
    Westlake University)

Abstract

The mitoribosome translates mitochondrial mRNAs and regulates energy conversion that is a signature of aerobic life forms. We present a 2.2 Å resolution structure of human mitoribosome together with validated mitoribosomal RNA (rRNA) modifications, including aminoacylated CP-tRNAVal. The structure shows how mitoribosomal proteins stabilise binding of mRNA and tRNA helping to align it in the decoding center, whereas the GDP-bound mS29 stabilizes intersubunit communication. Comparison between different states, with respect to tRNA position, allowed us to characterize a non-canonical L1 stalk, and molecular dynamics simulations revealed how it facilitates tRNA transitions in a way that does not require interactions with rRNA. We also report functionally important polyamines that are depleted when cells are subjected to an antibiotic treatment. The structural, biochemical, and computational data illuminate the principal functional components of the translation mechanism in mitochondria and provide a description of the structure and function of the human mitoribosome.

Suggested Citation

  • Vivek Singh & Yuzuru Itoh & Samuel Del’Olio & Asem Hassan & Andreas Naschberger & Rasmus Kock Flygaard & Yuko Nobe & Keiichi Izumikawa & Shintaro Aibara & Juni Andréll & Paul C. Whitford & Antoni Barr, 2024. "Mitoribosome structure with cofactors and modifications reveals mechanism of ligand binding and interactions with L1 stalk," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48163-x
    DOI: 10.1038/s41467-024-48163-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-48163-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-48163-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yuzuru Itoh & Anas Khawaja & Ivan Laptev & Miriam Cipullo & Ilian Atanassov & Petr Sergiev & Joanna Rorbach & Alexey Amunts, 2022. "Mechanism of mitoribosomal small subunit biogenesis and preinitiation," Nature, Nature, vol. 606(7914), pages 603-608, June.
    2. Georg K. A. Hochberg & Yang Liu & Erik G. Marklund & Brian P. H. Metzger & Arthur Laganowsky & Joseph W. Thornton, 2020. "A hydrophobic ratchet entrenches molecular complexes," Nature, Nature, vol. 588(7838), pages 503-508, December.
    3. Christopher B. Medina & Parul Mehrotra & Sanja Arandjelovic & Justin S. A. Perry & Yizhan Guo & Sho Morioka & Brady Barron & Scott F. Walk & Bart Ghesquière & Alexander S. Krupnick & Ulrike Lorenz & K, 2020. "Metabolites released from apoptotic cells act as tissue messengers," Nature, Nature, vol. 580(7801), pages 130-135, April.
    4. Kien Nguyen & Paul C. Whitford, 2016. "Steric interactions lead to collective tilting motion in the ribosome during mRNA–tRNA translocation," Nature Communications, Nature, vol. 7(1), pages 1-9, April.
    5. Yuzuru Itoh & Andreas Naschberger & Narges Mortezaei & Johannes M. Herrmann & Alexey Amunts, 2020. "Analysis of translating mitoribosome reveals functional characteristics of translation in mitochondria of fungi," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    6. Miriam Cipullo & Genís Valentín Gesé & Anas Khawaja & B. Martin Hällberg & Joanna Rorbach, 2021. "Structural basis for late maturation steps of the human mitoribosomal large subunit," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    7. Alexey Rozov & Iskander Khusainov & Kamel El Omari & Ramona Duman & Vitaliy Mykhaylyk & Marat Yusupov & Eric Westhof & Armin Wagner & Gulnara Yusupova, 2019. "Importance of potassium ions for ribosome structure and function revealed by long-wavelength X-ray diffraction," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
    8. Takeo Suzuki & Yuka Yashiro & Ittoku Kikuchi & Yuma Ishigami & Hironori Saito & Ikuya Matsuzawa & Shunpei Okada & Mari Mito & Shintaro Iwasaki & Ding Ma & Xuewei Zhao & Kana Asano & Huan Lin & Yohei K, 2020. "Complete chemical structures of human mitochondrial tRNAs," Nature Communications, Nature, vol. 11(1), pages 1-15, December.
    9. Nathan J. Harper & Chloe Burnside & Sebastian Klinge, 2023. "Principles of mitoribosomal small subunit assembly in eukaryotes," Nature, Nature, vol. 614(7946), pages 175-181, February.
    10. Mariana Levi & Kelsey Walak & Ailun Wang & Udayan Mohanty & Paul C. Whitford, 2020. "A steric gate controls P/E hybrid-state formation of tRNA on the ribosome," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    11. Ravi Kiran Koripella & Manjuli R. Sharma & Kalpana Bhargava & Partha P. Datta & Prem S. Kaushal & Pooja Keshavan & Linda L. Spremulli & Nilesh K. Banavali & Rajendra K. Agrawal, 2020. "Structures of the human mitochondrial ribosome bound to EF-G1 reveal distinct features of mitochondrial translation elongation," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    12. Hauke S. Hillen & Elena Lavdovskaia & Franziska Nadler & Elisa Hanitsch & Andreas Linden & Katherine E. Bohnsack & Henning Urlaub & Ricarda Richter-Dennerlein, 2021. "Structural basis of GTPase-mediated mitochondrial ribosome biogenesis and recycling," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    13. Anas Khawaja & Yuzuru Itoh & Cristina Remes & Henrik Spåhr & Olessya Yukhnovets & Henning Höfig & Alexey Amunts & Joanna Rorbach, 2020. "Distinct pre-initiation steps in human mitochondrial translation," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    14. Basil J. Greber & Daniel Boehringer & Marc Leibundgut & Philipp Bieri & Alexander Leitner & Nikolaus Schmitz & Ruedi Aebersold & Nenad Ban, 2014. "The complete structure of the large subunit of the mammalian mitochondrial ribosome," Nature, Nature, vol. 515(7526), pages 283-286, November.
    15. Eva Kummer & Marc Leibundgut & Oliver Rackham & Richard G. Lee & Daniel Boehringer & Aleksandra Filipovska & Nenad Ban, 2018. "Unique features of mammalian mitochondrial translation initiation revealed by cryo-EM," Nature, Nature, vol. 560(7717), pages 263-267, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thu Giang Nguyen & Christina Ritter & Eva Kummer, 2023. "Structural insights into the role of GTPBP10 in the RNA maturation of the mitoribosome," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Miriam Cipullo & Genís Valentín Gesé & Shreekara Gopalakrishna & Annika Krueger & Vivian Lobo & Maria A. Pirozhkova & James Marks & Petra Páleníková & Dmitrii Shiriaev & Yong Liu & Jelena Misic & Yu C, 2024. "GTPBP8 plays a role in mitoribosome formation in human mitochondria," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    3. Bo Qin & Simon M. Lauer & Annika Balke & Carlos H. Vieira-Vieira & Jörg Bürger & Thorsten Mielke & Matthias Selbach & Patrick Scheerer & Christian M. T. Spahn & Rainer Nikolay, 2023. "Cryo-EM captures early ribosome assembly in action," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Ju Zhou & Anhui Wang & Yinlong Song & Nan Liu & Jia Wang & Yan Li & Xin Liang & Guohui Li & Huiying Chu & Hong-Wei Wang, 2023. "Structural insights into the mechanism of GTP initiation of microtubule assembly," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    5. Annika Krüger & Cristina Remes & Dmitrii Igorevich Shiriaev & Yong Liu & Henrik Spåhr & Rolf Wibom & Ilian Atanassov & Minh Duc Nguyen & Barry S. Cooperman & Joanna Rorbach, 2023. "Human mitochondria require mtRF1 for translation termination at non-canonical stop codons," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    6. Victor Tobiasson & Ieva Berzina & Alexey Amunts, 2022. "Structure of a mitochondrial ribosome with fragmented rRNA in complex with membrane-targeting elements," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    7. Pedro Rebelo-Guiomar & Simone Pellegrino & Kyle C. Dent & Aldema Sas-Chen & Leonor Miller-Fleming & Caterina Garone & Lindsey Van Haute & Jack F. Rogan & Adam Dinan & Andrew E. Firth & Byron Andrews &, 2022. "A late-stage assembly checkpoint of the human mitochondrial ribosome large subunit," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    8. Franziska Nadler & Elena Lavdovskaia & Angelique Krempler & Luis Daniel Cruz-Zaragoza & Sven Dennerlein & Ricarda Richter-Dennerlein, 2022. "Human mtRF1 terminates COX1 translation and its ablation induces mitochondrial ribosome-associated quality control," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    9. Michael F. Fuss & Jan-Philip Wieferig & Robin A. Corey & Yvonne Hellmich & Igor Tascón & Joana S. Sousa & Phillip J. Stansfeld & Janet Vonck & Inga Hänelt, 2023. "Cyclic di-AMP traps proton-coupled K+ transporters of the KUP family in an inward-occluded conformation," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    10. Dylan Girodat & Hans-Joachim Wieden & Scott C. Blanchard & Karissa Y. Sanbonmatsu, 2023. "Geometric alignment of aminoacyl-tRNA relative to catalytic centers of the ribosome underpins accurate mRNA decoding," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    11. K. Shanmugha Rajan & Hava Madmoni & Anat Bashan & Masato Taoka & Saurav Aryal & Yuko Nobe & Tirza Doniger & Beathrice Galili Kostin & Amit Blumberg & Smadar Cohen-Chalamish & Schraga Schwartz & Andre , 2023. "A single pseudouridine on rRNA regulates ribosome structure and function in the mammalian parasite Trypanosoma brucei," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    12. Vincent Meynier & Steven W. Hardwick & Marjorie Catala & Johann J. Roske & Stephanie Oerum & Dimitri Y. Chirgadze & Pierre Barraud & Wyatt W. Yue & Ben F. Luisi & Carine Tisné, 2024. "Structural basis for human mitochondrial tRNA maturation," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    13. Paula Clemente & Javier Calvo-Garrido & Sarah F. Pearce & Florian A. Schober & Megumi Shigematsu & Stefan J. Siira & Isabelle Laine & Henrik Spåhr & Christian Steinmetzger & Katja Petzold & Yohei Kiri, 2022. "ANGEL2 phosphatase activity is required for non-canonical mitochondrial RNA processing," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    14. Yuta Noda & Shunpei Okada & Tsutomu Suzuki, 2022. "Regulation of A-to-I RNA editing and stop codon recoding to control selenoprotein expression during skeletal myogenesis," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    15. Zhangli Su & Ida Monshaugen & Briana Wilson & Fengbin Wang & Arne Klungland & Rune Ougland & Anindya Dutta, 2022. "TRMT6/61A-dependent base methylation of tRNA-derived fragments regulates gene-silencing activity and the unfolded protein response in bladder cancer," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    16. Bernhard Kuhle & Marscha Hirschi & Lili K. Doerfel & Gabriel C. Lander & Paul Schimmel, 2022. "Structural basis for shape-selective recognition and aminoacylation of a D-armless human mitochondrial tRNA," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    17. Swee Heng Milon Pang & Joshua D’Rozario & Senora Mendonca & Tejasvini Bhuvan & Natalie L. Payne & Di Zheng & Assifa Hisana & Georgia Wallis & Adele Barugahare & David Powell & Jai Rautela & Nicholas D, 2021. "Mesenchymal stromal cell apoptosis is required for their therapeutic function," Nature Communications, Nature, vol. 12(1), pages 1-19, December.
    18. Jana Aupič & Jure Borišek & Sebastian M. Fica & Wojciech P. Galej & Alessandra Magistrato, 2023. "Monovalent metal ion binding promotes the first transesterification reaction in the spliceosome," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    19. Simon A. Fromm & Kate M. O’Connor & Michael Purdy & Pramod R. Bhatt & Gary Loughran & John F. Atkins & Ahmad Jomaa & Simone Mattei, 2023. "The translating bacterial ribosome at 1.55 Å resolution generated by cryo-EM imaging services," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    20. Florent Waltz & Thalia Salinas-Giegé & Robert Englmeier & Herrade Meichel & Heddy Soufari & Lauriane Kuhn & Stefan Pfeffer & Friedrich Förster & Benjamin D. Engel & Philippe Giegé & Laurence Drouard &, 2021. "How to build a ribosome from RNA fragments in Chlamydomonas mitochondria," Nature Communications, Nature, vol. 12(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48163-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.