IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-18068-6.html
   My bibliography  Save this article

Complete chemical structures of human mitochondrial tRNAs

Author

Listed:
  • Takeo Suzuki

    (University of Tokyo)

  • Yuka Yashiro

    (University of Tokyo)

  • Ittoku Kikuchi

    (University of Tokyo)

  • Yuma Ishigami

    (University of Tokyo)

  • Hironori Saito

    (RIKEN
    University of Tokyo)

  • Ikuya Matsuzawa

    (University of Tokyo)

  • Shunpei Okada

    (University of Tokyo
    Tokyo University of Science)

  • Mari Mito

    (RIKEN)

  • Shintaro Iwasaki

    (RIKEN
    University of Tokyo)

  • Ding Ma

    (University of Tokyo)

  • Xuewei Zhao

    (University of Tokyo)

  • Kana Asano

    (University of Tokyo)

  • Huan Lin

    (University of Tokyo
    Hainan University)

  • Yohei Kirino

    (Thomas Jefferson University)

  • Yuriko Sakaguchi

    (University of Tokyo)

  • Tsutomu Suzuki

    (University of Tokyo)

Abstract

Mitochondria generate most cellular energy via oxidative phosphorylation. Twenty-two species of mitochondrial (mt-)tRNAs encoded in mtDNA translate essential subunits of the respiratory chain complexes. mt-tRNAs contain post-transcriptional modifications introduced by nuclear-encoded tRNA-modifying enzymes. They are required for deciphering genetic code accurately, as well as stabilizing tRNA. Loss of tRNA modifications frequently results in severe pathological consequences. Here, we perform a comprehensive analysis of post-transcriptional modifications of all human mt-tRNAs, including 14 previously-uncharacterized species. In total, we find 18 kinds of RNA modifications at 137 positions (8.7% in 1575 nucleobases) in 22 species of human mt-tRNAs. An up-to-date list of 34 genes responsible for mt-tRNA modifications are provided. We identify two genes required for queuosine (Q) formation in mt-tRNAs. Our results provide insight into the molecular mechanisms underlying the decoding system and could help to elucidate the molecular pathogenesis of human mitochondrial diseases caused by aberrant tRNA modifications.

Suggested Citation

  • Takeo Suzuki & Yuka Yashiro & Ittoku Kikuchi & Yuma Ishigami & Hironori Saito & Ikuya Matsuzawa & Shunpei Okada & Mari Mito & Shintaro Iwasaki & Ding Ma & Xuewei Zhao & Kana Asano & Huan Lin & Yohei K, 2020. "Complete chemical structures of human mitochondrial tRNAs," Nature Communications, Nature, vol. 11(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-18068-6
    DOI: 10.1038/s41467-020-18068-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-18068-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-18068-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuta Noda & Shunpei Okada & Tsutomu Suzuki, 2022. "Regulation of A-to-I RNA editing and stop codon recoding to control selenoprotein expression during skeletal myogenesis," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    2. Zhangli Su & Ida Monshaugen & Briana Wilson & Fengbin Wang & Arne Klungland & Rune Ougland & Anindya Dutta, 2022. "TRMT6/61A-dependent base methylation of tRNA-derived fragments regulates gene-silencing activity and the unfolded protein response in bladder cancer," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    3. Bernhard Kuhle & Marscha Hirschi & Lili K. Doerfel & Gabriel C. Lander & Paul Schimmel, 2022. "Structural basis for shape-selective recognition and aminoacylation of a D-armless human mitochondrial tRNA," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. Paula Clemente & Javier Calvo-Garrido & Sarah F. Pearce & Florian A. Schober & Megumi Shigematsu & Stefan J. Siira & Isabelle Laine & Henrik Spåhr & Christian Steinmetzger & Katja Petzold & Yohei Kiri, 2022. "ANGEL2 phosphatase activity is required for non-canonical mitochondrial RNA processing," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    5. Bernhard Kuhle & Marscha Hirschi & Lili K. Doerfel & Gabriel C. Lander & Paul Schimmel, 2023. "Structural basis for a degenerate tRNA identity code and the evolution of bimodal specificity in human mitochondrial tRNA recognition," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    6. Annika Krüger & Cristina Remes & Dmitrii Igorevich Shiriaev & Yong Liu & Henrik Spåhr & Rolf Wibom & Ilian Atanassov & Minh Duc Nguyen & Barry S. Cooperman & Joanna Rorbach, 2023. "Human mitochondria require mtRF1 for translation termination at non-canonical stop codons," Nature Communications, Nature, vol. 14(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-18068-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.