IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-23617-8.html
   My bibliography  Save this article

Structural basis for late maturation steps of the human mitoribosomal large subunit

Author

Listed:
  • Miriam Cipullo

    (Karolinska Institutet
    Max Planck Institute Biology of Ageing—Karolinska Institutet Laboratory, Karolinska Institutet)

  • Genís Valentín Gesé

    (Karolinska Institutet)

  • Anas Khawaja

    (Karolinska Institutet
    Max Planck Institute Biology of Ageing—Karolinska Institutet Laboratory, Karolinska Institutet)

  • B. Martin Hällberg

    (Karolinska Institutet
    Centre for Structural Systems Biology (CSSB) and Karolinska Institutet VR-RÅC)

  • Joanna Rorbach

    (Karolinska Institutet
    Max Planck Institute Biology of Ageing—Karolinska Institutet Laboratory, Karolinska Institutet)

Abstract

Mitochondrial ribosomes (mitoribosomes) synthesize a critical set of proteins essential for oxidative phosphorylation. Therefore, mitoribosomal function is vital to the cellular energy supply. Mitoribosome biogenesis follows distinct molecular pathways that remain poorly understood. Here, we determine the cryo-EM structures of mitoribosomes isolated from human cell lines with either depleted or overexpressed mitoribosome assembly factor GTPBP5, allowing us to capture consecutive steps during mitoribosomal large subunit (mt-LSU) biogenesis. Our structures provide essential insights into the last steps of 16S rRNA folding, methylation and peptidyl transferase centre (PTC) completion, which require the coordinated action of nine assembly factors. We show that mammalian-specific MTERF4 contributes to the folding of 16S rRNA, allowing 16 S rRNA methylation by MRM2, while GTPBP5 and NSUN4 promote fine-tuning rRNA rearrangements leading to PTC formation. Moreover, our data reveal an unexpected involvement of the elongation factor mtEF-Tu in mt-LSU assembly, where mtEF-Tu interacts with GTPBP5, similar to its interaction with tRNA during translational elongation.

Suggested Citation

  • Miriam Cipullo & Genís Valentín Gesé & Anas Khawaja & B. Martin Hällberg & Joanna Rorbach, 2021. "Structural basis for late maturation steps of the human mitoribosomal large subunit," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-23617-8
    DOI: 10.1038/s41467-021-23617-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-23617-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-23617-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bo Qin & Simon M. Lauer & Annika Balke & Carlos H. Vieira-Vieira & Jörg Bürger & Thorsten Mielke & Matthias Selbach & Patrick Scheerer & Christian M. T. Spahn & Rainer Nikolay, 2023. "Cryo-EM captures early ribosome assembly in action," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Miriam Cipullo & Genís Valentín Gesé & Shreekara Gopalakrishna & Annika Krueger & Vivian Lobo & Maria A. Pirozhkova & James Marks & Petra Páleníková & Dmitrii Shiriaev & Yong Liu & Jelena Misic & Yu C, 2024. "GTPBP8 plays a role in mitoribosome formation in human mitochondria," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    3. Thu Giang Nguyen & Christina Ritter & Eva Kummer, 2023. "Structural insights into the role of GTPBP10 in the RNA maturation of the mitoribosome," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. Pedro Rebelo-Guiomar & Simone Pellegrino & Kyle C. Dent & Aldema Sas-Chen & Leonor Miller-Fleming & Caterina Garone & Lindsey Van Haute & Jack F. Rogan & Adam Dinan & Andrew E. Firth & Byron Andrews &, 2022. "A late-stage assembly checkpoint of the human mitochondrial ribosome large subunit," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    5. Vivek Singh & Yuzuru Itoh & Samuel Del’Olio & Asem Hassan & Andreas Naschberger & Rasmus Kock Flygaard & Yuko Nobe & Keiichi Izumikawa & Shintaro Aibara & Juni Andréll & Paul C. Whitford & Antoni Barr, 2024. "Mitoribosome structure with cofactors and modifications reveals mechanism of ligand binding and interactions with L1 stalk," Nature Communications, Nature, vol. 15(1), pages 1-22, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-23617-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.