Author
Listed:
- Yuko Nakano
(Thomas Jefferson University)
- Howard Gamper
(Thomas Jefferson University)
- Henri McGuigan
(Thomas Jefferson University)
- Sunita Maharjan
(Thomas Jefferson University)
- Jiatong Li
(University of Pennsylvania)
- Zhiyi Sun
(New England Biolabs)
- Erbay Yigit
(New England Biolabs)
- Sebastian Grünberg
(New England Biolabs)
- Keerthana Krishnan
(New England Biolabs)
- Nan-Sheng Li
(University of Chicago)
- Joseph A. Piccirilli
(University of Chicago
University of Chicago)
- Ralph Kleiner
(Princeton University)
- Nicole Nichols
(New England Biolabs)
- Brian D. Gregory
(University of Pennsylvania)
- Ya-Ming Hou
(Thomas Jefferson University)
Abstract
While all native tRNAs undergo extensive post-transcriptional modifications as a mechanism to regulate gene expression, mapping these modifications remains challenging. The critical barrier is the difficulty of readthrough of modifications by reverse transcriptases (RTs). Here we use Induro—a new group-II intron-encoded RT—to map and quantify genome-wide tRNA modifications in Induro-tRNAseq. We show that Induro progressively increases readthrough over time by selectively overcoming RT stops without altering the misincorporation frequency. In a parallel analysis of Induro vs. a related RT, we provide comparative datasets to facilitate the prediction of each modification. We assess tRNA modifications across five human cell lines and three mouse tissues and show that, while the landscape of modifications is highly variable throughout the tRNA sequence framework, it is stabilized for modifications that are required for reading of the genetic code. The coordinated changes have fundamental importance for development of tRNA modifications in protein homeostasis.
Suggested Citation
Yuko Nakano & Howard Gamper & Henri McGuigan & Sunita Maharjan & Jiatong Li & Zhiyi Sun & Erbay Yigit & Sebastian Grünberg & Keerthana Krishnan & Nan-Sheng Li & Joseph A. Piccirilli & Ralph Kleiner & , 2025.
"Genome-wide profiling of tRNA modifications by Induro-tRNAseq reveals coordinated changes,"
Nature Communications, Nature, vol. 16(1), pages 1-19, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56348-1
DOI: 10.1038/s41467-025-56348-1
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56348-1. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.