IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-28503-5.html
   My bibliography  Save this article

A late-stage assembly checkpoint of the human mitochondrial ribosome large subunit

Author

Listed:
  • Pedro Rebelo-Guiomar

    (University of Cambridge, Cambridge Biomedical Campus)

  • Simone Pellegrino

    (University of Cambridge, Cambridge Biomedical Campus
    Cambridge Biomedical Campus, Jeffrey Cheah Biomedical Centre
    University of Cambridge, Cambridge Biomedical Campus, Jeffrey Cheah Biomedical Centre)

  • Kyle C. Dent

    (University of Cambridge, Cambridge Biomedical Campus
    Cambridge Biomedical Campus, Jeffrey Cheah Biomedical Centre
    University of Cambridge, Cambridge Biomedical Campus, Jeffrey Cheah Biomedical Centre
    Cambridge Biomedical Campus)

  • Aldema Sas-Chen

    (Weizmann Institute of Science
    Tel Aviv University)

  • Leonor Miller-Fleming

    (University of Cambridge, Cambridge Biomedical Campus)

  • Caterina Garone

    (University of Cambridge, Cambridge Biomedical Campus
    University of Bologna)

  • Lindsey Van Haute

    (University of Cambridge, Cambridge Biomedical Campus)

  • Jack F. Rogan

    (STORM Therapeutics Limited, Babraham Research Campus)

  • Adam Dinan

    (University of Cambridge)

  • Andrew E. Firth

    (University of Cambridge)

  • Byron Andrews

    (STORM Therapeutics Limited, Babraham Research Campus)

  • Alexander J. Whitworth

    (University of Cambridge, Cambridge Biomedical Campus)

  • Schraga Schwartz

    (Weizmann Institute of Science)

  • Alan J. Warren

    (University of Cambridge, Cambridge Biomedical Campus
    Cambridge Biomedical Campus, Jeffrey Cheah Biomedical Centre
    University of Cambridge, Cambridge Biomedical Campus, Jeffrey Cheah Biomedical Centre)

  • Michal Minczuk

    (University of Cambridge, Cambridge Biomedical Campus)

Abstract

Many cellular processes, including ribosome biogenesis, are regulated through post-transcriptional RNA modifications. Here, a genome-wide analysis of the human mitochondrial transcriptome shows that 2’-O-methylation is limited to residues of the mitoribosomal large subunit (mtLSU) 16S mt-rRNA, introduced by MRM1, MRM2 and MRM3, with the modifications installed by the latter two proteins being interdependent. MRM2 controls mitochondrial respiration by regulating mitoribosome biogenesis. In its absence, mtLSU particles (visualized by cryo-EM at the resolution of 2.6 Å) present disordered RNA domains, partial occupancy of bL36m and bound MALSU1:L0R8F8:mtACP anti-association module, allowing five mtLSU biogenesis intermediates with different intersubunit interface configurations to be placed along the assembly pathway. However, mitoribosome biogenesis does not depend on the methyltransferase activity of MRM2. Disruption of the MRM2 Drosophila melanogaster orthologue leads to mitochondria-related developmental arrest. This work identifies a key checkpoint during mtLSU assembly, essential to maintain mitochondrial homeostasis.

Suggested Citation

  • Pedro Rebelo-Guiomar & Simone Pellegrino & Kyle C. Dent & Aldema Sas-Chen & Leonor Miller-Fleming & Caterina Garone & Lindsey Van Haute & Jack F. Rogan & Adam Dinan & Andrew E. Firth & Byron Andrews &, 2022. "A late-stage assembly checkpoint of the human mitochondrial ribosome large subunit," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28503-5
    DOI: 10.1038/s41467-022-28503-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-28503-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-28503-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Katerina Naydenova & Christopher J. Russo, 2017. "Measuring the effects of particle orientation to improve the efficiency of electron cryomicroscopy," Nature Communications, Nature, vol. 8(1), pages 1-5, December.
    2. Miriam Cipullo & Genís Valentín Gesé & Anas Khawaja & B. Martin Hällberg & Joanna Rorbach, 2021. "Structural basis for late maturation steps of the human mitoribosomal large subunit," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    3. Jingdong Cheng & Otto Berninghausen & Roland Beckmann, 2021. "A distinct assembly pathway of the human 39S late pre-mitoribosome," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    4. Hauke S. Hillen & Elena Lavdovskaia & Franziska Nadler & Elisa Hanitsch & Andreas Linden & Katherine E. Bohnsack & Henning Urlaub & Ricarda Richter-Dennerlein, 2021. "Structural basis of GTPase-mediated mitochondrial ribosome biogenesis and recycling," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Miriam Cipullo & Genís Valentín Gesé & Shreekara Gopalakrishna & Annika Krueger & Vivian Lobo & Maria A. Pirozhkova & James Marks & Petra Páleníková & Dmitrii Shiriaev & Yong Liu & Jelena Misic & Yu C, 2024. "GTPBP8 plays a role in mitoribosome formation in human mitochondria," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    2. Thu Giang Nguyen & Christina Ritter & Eva Kummer, 2023. "Structural insights into the role of GTPBP10 in the RNA maturation of the mitoribosome," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bo Qin & Simon M. Lauer & Annika Balke & Carlos H. Vieira-Vieira & Jörg Bürger & Thorsten Mielke & Matthias Selbach & Patrick Scheerer & Christian M. T. Spahn & Rainer Nikolay, 2023. "Cryo-EM captures early ribosome assembly in action," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Thu Giang Nguyen & Christina Ritter & Eva Kummer, 2023. "Structural insights into the role of GTPBP10 in the RNA maturation of the mitoribosome," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Miriam Cipullo & Genís Valentín Gesé & Shreekara Gopalakrishna & Annika Krueger & Vivian Lobo & Maria A. Pirozhkova & James Marks & Petra Páleníková & Dmitrii Shiriaev & Yong Liu & Jelena Misic & Yu C, 2024. "GTPBP8 plays a role in mitoribosome formation in human mitochondria," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    4. Vivek Singh & Yuzuru Itoh & Samuel Del’Olio & Asem Hassan & Andreas Naschberger & Rasmus Kock Flygaard & Yuko Nobe & Keiichi Izumikawa & Shintaro Aibara & Juni Andréll & Paul C. Whitford & Antoni Barr, 2024. "Mitoribosome structure with cofactors and modifications reveals mechanism of ligand binding and interactions with L1 stalk," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    5. Fred E. Fregoso & Malgorzata Boczkowska & Grzegorz Rebowski & Peter J. Carman & Trevor Eeuwen & Roberto Dominguez, 2023. "Mechanism of synergistic activation of Arp2/3 complex by cortactin and WASP-family proteins," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Rhianna J. Rowland & Svitlana Korolchuk & Marco Salamina & Natalie J. Tatum & James R. Ault & Sam Hart & Johan P. Turkenburg & James N. Blaza & Martin E. M. Noble & Jane A. Endicott, 2024. "Cryo-EM structure of the CDK2-cyclin A-CDC25A complex," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    7. Anaïs Menny & Marie V. Lukassen & Emma C. Couves & Vojtech Franc & Albert J. R. Heck & Doryen Bubeck, 2021. "Structural basis of soluble membrane attack complex packaging for clearance," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    8. Hongcheng Fan & Bo Wang & Yan Zhang & Yun Zhu & Bo Song & Haijin Xu & Yujia Zhai & Mingqiang Qiao & Fei Sun, 2021. "A cryo-electron microscopy support film formed by 2D crystals of hydrophobin HFBI," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    9. Franziska Nadler & Elena Lavdovskaia & Angelique Krempler & Luis Daniel Cruz-Zaragoza & Sven Dennerlein & Ricarda Richter-Dennerlein, 2022. "Human mtRF1 terminates COX1 translation and its ablation induces mitochondrial ribosome-associated quality control," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    10. Radostin Danev & Matthew Belousoff & Yi-Lynn Liang & Xin Zhang & Fabian Eisenstein & Denise Wootten & Patrick M. Sexton, 2021. "Routine sub-2.5 Å cryo-EM structure determination of GPCRs," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    11. Anjie Li & Tingting You & Xiaojie Pang & Yidi Wang & Lijin Tian & Xiaobo Li & Zhenfeng Liu, 2024. "Structural basis for an early stage of the photosystem II repair cycle in Chlamydomonas reinhardtii," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    12. Xiang Li & Mengjiao Wang & Timo Denk & Robert Buschauer & Yi Li & Roland Beckmann & Jingdong Cheng, 2024. "Structural basis for differential inhibition of eukaryotic ribosomes by tigecycline," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    13. Kaitlyn M. Abe & Gan Li & Qixiang He & Timothy Grant & Ci Ji Lim, 2024. "Small LEA proteins mitigate air-water interface damage to fragile cryo-EM samples during plunge freezing," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28503-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.