IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-36607-9.html
   My bibliography  Save this article

Cryo-EM captures early ribosome assembly in action

Author

Listed:
  • Bo Qin

    (Institut für Medizinische Physik und Biophysik, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin)

  • Simon M. Lauer

    (Institut für Medizinische Physik und Biophysik, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin)

  • Annika Balke

    (Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Group Protein X-ray Crystallography and Signal Transduction)

  • Carlos H. Vieira-Vieira

    (Proteome Dynamics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC)
    Humboldt Universität zu Berlin)

  • Jörg Bürger

    (Institut für Medizinische Physik und Biophysik, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin
    Microscopy and Cryo-Electron Microscopy Service Group, Max Planck Institute for Molecular Genetics)

  • Thorsten Mielke

    (Microscopy and Cryo-Electron Microscopy Service Group, Max Planck Institute for Molecular Genetics)

  • Matthias Selbach

    (Proteome Dynamics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC)
    Charité -Universitätsmedizin Berlin)

  • Patrick Scheerer

    (Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Group Protein X-ray Crystallography and Signal Transduction)

  • Christian M. T. Spahn

    (Institut für Medizinische Physik und Biophysik, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin)

  • Rainer Nikolay

    (Institut für Medizinische Physik und Biophysik, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin
    Department of Genome Regulation, Max Planck Institute for Molecular Genetics)

Abstract

Ribosome biogenesis is a fundamental multi-step cellular process in all domains of life that involves the production, processing, folding, and modification of ribosomal RNAs (rRNAs) and ribosomal proteins. To obtain insights into the still unexplored early assembly phase of the bacterial 50S subunit, we exploited a minimal in vitro reconstitution system using purified ribosomal components and scalable reaction conditions. Time-limited assembly assays combined with cryo-EM analysis visualizes the structurally complex assembly pathway starting with a particle consisting of ordered density for only ~500 nucleotides of 23S rRNA domain I and three ribosomal proteins. In addition, our structural analysis reveals that early 50S assembly occurs in a domain-wise fashion, while late 50S assembly proceeds incrementally. Furthermore, we find that both ribosomal proteins and folded rRNA helices, occupying surface exposed regions on pre-50S particles, induce, or stabilize rRNA folds within adjacent regions, thereby creating cooperativity.

Suggested Citation

  • Bo Qin & Simon M. Lauer & Annika Balke & Carlos H. Vieira-Vieira & Jörg Bürger & Thorsten Mielke & Matthias Selbach & Patrick Scheerer & Christian M. T. Spahn & Rainer Nikolay, 2023. "Cryo-EM captures early ribosome assembly in action," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36607-9
    DOI: 10.1038/s41467-023-36607-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-36607-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-36607-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yi Zhou & Sharmishtha Musalgaonkar & Arlen W. Johnson & David W. Taylor, 2019. "Tightly-orchestrated rearrangements govern catalytic center assembly of the ribosome," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    2. Shan Wu & Beril Tutuncuoglu & Kaige Yan & Hailey Brown & Yixiao Zhang & Dan Tan & Michael Gamalinda & Yi Yuan & Zhifei Li & Jelena Jakovljevic & Chengying Ma & Jianlin Lei & Meng-Qiu Dong & John L. Wo, 2016. "Diverse roles of assembly factors revealed by structures of late nuclear pre-60S ribosomes," Nature, Nature, vol. 534(7605), pages 133-137, June.
    3. Jingdong Cheng & Otto Berninghausen & Roland Beckmann, 2021. "A distinct assembly pathway of the human 39S late pre-mitoribosome," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    4. Zahra Assur Sanghai & Linamarie Miller & Kelly R. Molloy & Jonas Barandun & Mirjam Hunziker & Malik Chaker-Margot & Junjie Wang & Brian T. Chait & Sebastian Klinge, 2018. "Modular assembly of the nucleolar pre-60S ribosomal subunit," Nature, Nature, vol. 556(7699), pages 126-129, April.
    5. Hauke S. Hillen & Elena Lavdovskaia & Franziska Nadler & Elisa Hanitsch & Andreas Linden & Katherine E. Bohnsack & Henning Urlaub & Ricarda Richter-Dennerlein, 2021. "Structural basis of GTPase-mediated mitochondrial ribosome biogenesis and recycling," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    6. Miriam Cipullo & Genís Valentín Gesé & Anas Khawaja & B. Martin Hällberg & Joanna Rorbach, 2021. "Structural basis for late maturation steps of the human mitoribosomal large subunit," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kai Sheng & Ning Li & Jessica N. Rabuck-Gibbons & Xiyu Dong & Dmitry Lyumkis & James R. Williamson, 2023. "Assembly landscape for the bacterial large ribosomal subunit," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Miriam Cipullo & Genís Valentín Gesé & Shreekara Gopalakrishna & Annika Krueger & Vivian Lobo & Maria A. Pirozhkova & James Marks & Petra Páleníková & Dmitrii Shiriaev & Yong Liu & Jelena Misic & Yu C, 2024. "GTPBP8 plays a role in mitoribosome formation in human mitochondria," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    2. Gerald Ryan R. Aquino & Philipp Hackert & Nicolai Krogh & Kuan-Ting Pan & Mariam Jaafar & Anthony K. Henras & Henrik Nielsen & Henning Urlaub & Katherine E. Bohnsack & Markus T. Bohnsack, 2021. "The RNA helicase Dbp7 promotes domain V/VI compaction and stabilization of inter-domain interactions during early 60S assembly," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    3. Thu Giang Nguyen & Christina Ritter & Eva Kummer, 2023. "Structural insights into the role of GTPBP10 in the RNA maturation of the mitoribosome," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. Pedro Rebelo-Guiomar & Simone Pellegrino & Kyle C. Dent & Aldema Sas-Chen & Leonor Miller-Fleming & Caterina Garone & Lindsey Van Haute & Jack F. Rogan & Adam Dinan & Andrew E. Firth & Byron Andrews &, 2022. "A late-stage assembly checkpoint of the human mitochondrial ribosome large subunit," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    5. Vivek Singh & Yuzuru Itoh & Samuel Del’Olio & Asem Hassan & Andreas Naschberger & Rasmus Kock Flygaard & Yuko Nobe & Keiichi Izumikawa & Shintaro Aibara & Juni Andréll & Paul C. Whitford & Antoni Barr, 2024. "Mitoribosome structure with cofactors and modifications reveals mechanism of ligand binding and interactions with L1 stalk," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    6. Lisa Kofler & Lorenz Grundmann & Magdalena Gerhalter & Michael Prattes & Juliane Merl-Pham & Gertrude Zisser & Irina Grishkovskaya & Victor-Valentin Hodirnau & Martin Vareka & Rolf Breinbauer & Stefan, 2024. "The novel ribosome biogenesis inhibitor usnic acid blocks nucleolar pre-60S maturation," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    7. Kamil Sekulski & Victor Emmanuel Cruz & Christine S. Weirich & Jan P. Erzberger, 2023. "rRNA methylation by Spb1 regulates the GTPase activity of Nog2 during 60S ribosomal subunit assembly," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    8. Franziska Nadler & Elena Lavdovskaia & Angelique Krempler & Luis Daniel Cruz-Zaragoza & Sven Dennerlein & Ricarda Richter-Dennerlein, 2022. "Human mtRF1 terminates COX1 translation and its ablation induces mitochondrial ribosome-associated quality control," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    9. Victor E. Cruz & Christine S. Weirich & Nagesh Peddada & Jan P. Erzberger, 2024. "The DEAD-box ATPase Dbp10/DDX54 initiates peptidyl transferase center formation during 60S ribosome biogenesis," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    10. Sébastien Durand & Marion Bruelle & Fleur Bourdelais & Bigitha Bennychen & Juliana Blin-Gonthier & Caroline Isaac & Aurélia Huyghe & Sylvie Martel & Antoine Seyve & Christophe Vanbelle & Annie Adrait , 2023. "RSL24D1 sustains steady-state ribosome biogenesis and pluripotency translational programs in embryonic stem cells," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    11. Chengying Ma & Damu Wu & Qian Chen & Ning Gao, 2022. "Structural dynamics of AAA + ATPase Drg1 and mechanism of benzo-diazaborine inhibition," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    12. Xiang Li & Mengjiao Wang & Timo Denk & Robert Buschauer & Yi Li & Roland Beckmann & Jingdong Cheng, 2024. "Structural basis for differential inhibition of eukaryotic ribosomes by tigecycline," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    13. Kai Sheng & Ning Li & Jessica N. Rabuck-Gibbons & Xiyu Dong & Dmitry Lyumkis & James R. Williamson, 2023. "Assembly landscape for the bacterial large ribosomal subunit," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36607-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.