IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-33582-5.html
   My bibliography  Save this article

Structure of a mitochondrial ribosome with fragmented rRNA in complex with membrane-targeting elements

Author

Listed:
  • Victor Tobiasson

    (Stockholm University)

  • Ieva Berzina

    (Karolinska Institute)

  • Alexey Amunts

    (Stockholm University)

Abstract

Mitoribosomes of green algae display a great structural divergence from their tracheophyte relatives, with fragmentation of both rRNA and proteins as a defining feature. Here, we report a 2.9 Å resolution structure of the mitoribosome from the alga Polytomella magna harbouring a reduced rRNA split into 13 fragments. We found that the rRNA contains a non-canonical reduced form of the 5S, as well as a permutation of the LSU domain I. The mt-5S rRNA is stabilised by mL40 that is also found in mitoribosomes lacking the 5S, which suggests an evolutionary pathway. Through comparison to other ribosomes with fragmented rRNAs, we observe that the pattern is shared across large evolutionary distances, and between cellular compartments, indicating an evolutionary convergence and supporting the concept of a primordial fragmented ribosome. On the protein level, eleven peripherally associated HEAT-repeat proteins are involved in the binding of 3′ rRNA termini, and the structure features a prominent pseudo-trimer of one of them (mL116). Finally, in the exit tunnel, mL128 constricts the tunnel width of the vestibular area, and mL105, a homolog of a membrane targeting component mediates contacts with an inner membrane bound insertase. Together, the structural analysis provides insight into the evolution of the ribosomal machinery in mitochondria.

Suggested Citation

  • Victor Tobiasson & Ieva Berzina & Alexey Amunts, 2022. "Structure of a mitochondrial ribosome with fragmented rRNA in complex with membrane-targeting elements," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33582-5
    DOI: 10.1038/s41467-022-33582-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-33582-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-33582-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Florent Waltz & Thalia Salinas-Giegé & Robert Englmeier & Herrade Meichel & Heddy Soufari & Lauriane Kuhn & Stefan Pfeffer & Friedrich Förster & Benjamin D. Engel & Philippe Giegé & Laurence Drouard &, 2021. "How to build a ribosome from RNA fragments in Chlamydomonas mitochondria," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    2. Yaser Hashem & Amedee des Georges & Jie Fu & Sarah N. Buss & Fabrice Jossinet & Amy Jobe & Qin Zhang & Hstau Y. Liao & Robert A. Grassucci & Chandrajit Bajaj & Eric Westhof & Susan Madison-Antenucci &, 2013. "High-resolution cryo-electron microscopy structure of the Trypanosoma brucei ribosome," Nature, Nature, vol. 494(7437), pages 385-389, February.
    3. Basil J. Greber & Daniel Boehringer & Marc Leibundgut & Philipp Bieri & Alexander Leitner & Nikolaus Schmitz & Ruedi Aebersold & Nenad Ban, 2014. "The complete structure of the large subunit of the mammalian mitochondrial ribosome," Nature, Nature, vol. 515(7526), pages 283-286, November.
    4. Yuzuru Itoh & Andreas Naschberger & Narges Mortezaei & Johannes M. Herrmann & Alexey Amunts, 2020. "Analysis of translating mitoribosome reveals functional characteristics of translation in mitochondria of fungi," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vivek Singh & Yuzuru Itoh & Samuel Del’Olio & Asem Hassan & Andreas Naschberger & Rasmus Kock Flygaard & Yuko Nobe & Keiichi Izumikawa & Shintaro Aibara & Juni Andréll & Paul C. Whitford & Antoni Barr, 2024. "Mitoribosome structure with cofactors and modifications reveals mechanism of ligand binding and interactions with L1 stalk," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    2. Florent Waltz & Thalia Salinas-Giegé & Robert Englmeier & Herrade Meichel & Heddy Soufari & Lauriane Kuhn & Stefan Pfeffer & Friedrich Förster & Benjamin D. Engel & Philippe Giegé & Laurence Drouard &, 2021. "How to build a ribosome from RNA fragments in Chlamydomonas mitochondria," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    3. Haonan Zhang & Yan Li & Yanan Liu & Dongyu Li & Lin Wang & Kai Song & Keyan Bao & Ping Zhu, 2023. "A method for restoring signals and revealing individual macromolecule states in cryo-ET, REST," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. K. Shanmugha Rajan & Hava Madmoni & Anat Bashan & Masato Taoka & Saurav Aryal & Yuko Nobe & Tirza Doniger & Beathrice Galili Kostin & Amit Blumberg & Smadar Cohen-Chalamish & Schraga Schwartz & Andre , 2023. "A single pseudouridine on rRNA regulates ribosome structure and function in the mammalian parasite Trypanosoma brucei," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    5. Thu Giang Nguyen & Christina Ritter & Eva Kummer, 2023. "Structural insights into the role of GTPBP10 in the RNA maturation of the mitoribosome," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33582-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.