IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-48154-y.html
   My bibliography  Save this article

Color morphing surfaces with effective chemical shielding

Author

Listed:
  • Adil Majeed Rather

    (North Carolina State University)

  • Sravanthi Vallabhuneni

    (North Carolina State University)

  • Austin J. Pyrch

    (North Carolina State University)

  • Mohammed Barrubeeah

    (North Carolina State University)

  • Sreekiran Pillai

    (North Carolina State University)

  • Arsalan Taassob

    (North Carolina State University)

  • Felix N. Castellano

    (North Carolina State University)

  • Arun Kumar Kota

    (North Carolina State University)

Abstract

Color morphing refers to color change in response to an environmental stimulus. Photochromic materials allow color morphing in response to light, but almost all photochromic materials suffer from degradation when exposed to moist/humid environments or harsh chemical environments. One way of overcoming this challenge is by imparting chemical shielding to the color morphing materials via superomniphobicity. However, simultaneously imparting color morphing and superomniphobicity, both surface properties, requires a rational design. In this work, we systematically design color morphing surfaces with superomniphobicity through an appropriate combination of a photochromic dye, a low surface energy material, and a polymer in a suitable solvent (for one-pot synthesis), applied through spray coating (for the desired texture). We also investigate the influence of polymer polarity and material composition on color morphing kinetics and superomniphobicity. Our color morphing surfaces with effective chemical shielding can be designed with a wide variety of photochromic and thermochromic pigments and applied on a wide variety of substrates. We envision that such surfaces will have a wide range of applications including camouflage soldier fabrics/apparel for chem-bio warfare, color morphing soft robots, rewritable color patterns, optical data storage, and ophthalmic sun screening.

Suggested Citation

  • Adil Majeed Rather & Sravanthi Vallabhuneni & Austin J. Pyrch & Mohammed Barrubeeah & Sreekiran Pillai & Arsalan Taassob & Felix N. Castellano & Arun Kumar Kota, 2024. "Color morphing surfaces with effective chemical shielding," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48154-y
    DOI: 10.1038/s41467-024-48154-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-48154-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-48154-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nathan Man-Wai Wu & Maggie Ng & Vivian Wing-Wah Yam, 2022. "Photocontrolled multiple-state photochromic benzo[b]phosphole thieno[3,2-b]phosphole-containing alkynylgold(I) complex via selective light irradiation," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Dehui Wang & Qiangqiang Sun & Matti J. Hokkanen & Chenglin Zhang & Fan-Yen Lin & Qiang Liu & Shun-Peng Zhu & Tianfeng Zhou & Qing Chang & Bo He & Quan Zhou & Longquan Chen & Zuankai Wang & Robin H. A., 2020. "Design of robust superhydrophobic surfaces," Nature, Nature, vol. 582(7810), pages 55-59, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Yubo & Du, Jianqiang & Liu, Guangxin & Ma, Danzhu & Jia, Fengrui & Klemeš, Jiří Jaromír & Wang, Jin, 2022. "A review of self-cleaning technology to reduce dust and ice accumulation in photovoltaic power generation using superhydrophobic coating," Renewable Energy, Elsevier, vol. 185(C), pages 1034-1061.
    2. Jinfei Wei & Jiaojiao Zhang & Xiaojun Cao & Jinhui Huo & Xiaopeng Huang & Junping Zhang, 2023. "Durable superhydrophobic coatings for prevention of rain attenuation of 5G/weather radomes," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Hu, Haitao & Zhao, Yaxin & Li, Yuhan, 2023. "Research progress on flow and heat transfer characteristics of fluids in metal foams," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    4. Chen Ma & Li Chen & Lin Wang & Wei Tong & Chenlei Chu & Zhiping Yuan & Cunjing Lv & Quanshui Zheng, 2022. "Condensation droplet sieve," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Sun, Haoyang & Li, Tao & Sha, Lyu & Chen, Fengfan & Li, Maoning & Yang, Ye & Li, Bin & Li, Dandan & Sun, Dazhi, 2023. "Comparative of diatom frustules, diatomite, and silica particles for constructing self-healing superhydrophobic materials with capacity for thermal energy storage," Applied Energy, Elsevier, vol. 332(C).
    6. Jiafeng Jin & Jinsheng Sun & Kesheng Rong & Kaihe Lv & Tuan A. H. Nguyen & Ren Wang & Xianbin Huang & Yingrui Bai & Jingping Liu & Jintang Wang, 2020. "Gas-Wetting Alteration by Fluorochemicals and Its Application for Enhancing Gas Recovery in Gas-Condensate Reservoirs: A Review," Energies, MDPI, vol. 13(18), pages 1-23, September.
    7. Sun, Wen & Wei, Yutong & Feng, Yanhui & Chu, Fuqiang, 2024. "Anti-icing and deicing characteristics of photothermal superhydrophobic surfaces based on metal nanoparticles and carbon nanotube materials," Energy, Elsevier, vol. 286(C).
    8. Lizhong Wang & Ze Tian & Guochen Jiang & Xiao Luo & Changhao Chen & Xinyu Hu & Hongjun Zhang & Minlin Zhong, 2022. "Spontaneous dewetting transitions of droplets during icing & melting cycle," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    9. Zehang Cui & Yachao Zhang & Zhicheng Zhang & Bingrui Liu & Yiyu Chen & Hao Wu & Yuxuan Zhang & Zilong Cheng & Guoqiang Li & Jiale Yong & Jiawen Li & Dong Wu & Jiaru Chu & Yanlei Hu, 2024. "Durable Janus membrane with on-demand mode switching fabricated by femtosecond laser," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    10. Arunkumar, T. & Parbat, Dibyangana & Lee, Sang Joon, 2024. "Comprehensive review of advanced desalination technologies for solar-powered all-day, all-weather freshwater harvesting systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    11. Xiao Yan & Samuel C. Y. Au & Sui Cheong Chan & Ying Lung Chan & Ngai Chun Leung & Wa Yat Wu & Dixon T. Sin & Guanlei Zhao & Casper H. Y. Chung & Mei Mei & Yinchuang Yang & Huihe Qiu & Shuhuai Yao, 2024. "Unraveling the role of vaporization momentum in self-jumping dynamics of freezing supercooled droplets at reduced pressures," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    12. Zong-Lin Li & Kun Chen & Fei Li & Zhi-Jun Shi & Qi-Li Sun & Peng-Qi Li & Yu-Gui Peng & Lai-Xin Huang & Guang Yang & Hairong Zheng & Xue-Feng Zhu, 2023. "Decorated bacteria-cellulose ultrasonic metasurface," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    13. Shengteng Zhao & Zhichao Ma & Mingkai Song & Libo Tan & Hongwei Zhao & Luquan Ren, 2023. "Golden section criterion to achieve droplet trampoline effect on metal-based superhydrophobic surface," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    14. Wancheng Gu & Wanbo Li & Yu Zhang & Yage Xia & Qiaoling Wang & Wei Wang & Ping Liu & Xinquan Yu & Hui He & Caihua Liang & Youxue Ban & Changwen Mi & Sha Yang & Wei Liu & Miaomiao Cui & Xu Deng & Zuank, 2023. "Ultra-durable superhydrophobic cellular coatings," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    15. Muhammad Jahidul Hoque & Longnan Li & Jingcheng Ma & Hyeongyun Cha & Soumyadip Sett & Xiao Yan & Kazi Fazle Rabbi & Jin Yao Ho & Siavash Khodakarami & Jason Suwala & Wentao Yang & Omid Mohammadmoradi , 2023. "Ultra-resilient multi-layer fluorinated diamond like carbon hydrophobic surfaces," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    16. Hong Xiang & Yongfu Li & Qinglong Liao & Lei Xia & Xiaodong Wu & Huang Zhou & Chunmei Li & Xing Fan, 2024. "Recent Advances in Smart Fabric-Type Wearable Electronics toward Comfortable Wearing," Energies, MDPI, vol. 17(11), pages 1-36, May.
    17. Maria Cannio & Dino Norberto Boccaccini & Stefano Caporali & Rosa Taurino, 2024. "Superhydrophobic Materials from Waste: Innovative Approach," Clean Technol., MDPI, vol. 6(1), pages 1-23, March.
    18. Hakan Gürsu, 2024. "An Affordable System Solution for Enhancing Tree Survival in Dry Environments," Sustainability, MDPI, vol. 16(14), pages 1-32, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48154-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.