IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i11p2627-d1404763.html
   My bibliography  Save this article

Recent Advances in Smart Fabric-Type Wearable Electronics toward Comfortable Wearing

Author

Listed:
  • Hong Xiang

    (State Grid Chongqing Electric Power Research Institute, Chongqing 401221, China)

  • Yongfu Li

    (State Grid Chongqing Electric Power Research Institute, Chongqing 401221, China)

  • Qinglong Liao

    (State Grid Chongqing Electric Power Research Institute, Chongqing 401221, China)

  • Lei Xia

    (State Grid Chongqing Electric Power Research Institute, Chongqing 401221, China)

  • Xiaodong Wu

    (State Grid Chongqing Electric Power Research Institute, Chongqing 401221, China)

  • Huang Zhou

    (School of Pharmacy and Institute of Pharmacy, North Sichuan Medical College, Nanchong 637100, China)

  • Chunmei Li

    (College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China)

  • Xing Fan

    (College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China)

Abstract

With the improvement of the energy density and sensing accuracy of wearable devices, there is increasing interest in applying wearable electronics in daily life. However, traditional rigid plate-structured wearable devices cannot meet the human body’s wearing habits and make users may feel uncomfortable after wearing them for a long time. Fabric-type wearable electronics can be conformably coated on human skin without discomfort from mismatches in mechanical properties between the human body and electronics. Although state-of-the-art textile-based wearable devices have shown unique advantages in the field of e-textiles, real-world scenarios often involve stretching, bending, and wetting. Further efforts should be made to achieve “comfortable wearing” due to the great challenge of achieving both promising electrical properties and comfort in a single device. This review presents a comprehensive overview of the advances in smart fabric-based wearable electronics toward comfortable wearing, emphasizing their stretchability, hydrophobicity, air permeability, stability, and color-change abilities. Through addressing the challenges that persist in fabric-type wearable electronics, we are optimistic that these will be soon ubiquitous in our daily lives, offering exceptionally comfortable wearing experiences for health monitoring, sports performance tracking, and even fashion, paving the way for a more comfortable and technologically advanced future.

Suggested Citation

  • Hong Xiang & Yongfu Li & Qinglong Liao & Lei Xia & Xiaodong Wu & Huang Zhou & Chunmei Li & Xing Fan, 2024. "Recent Advances in Smart Fabric-Type Wearable Electronics toward Comfortable Wearing," Energies, MDPI, vol. 17(11), pages 1-36, May.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:11:p:2627-:d:1404763
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/11/2627/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/11/2627/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xin Ai & Emrys W. Evans & Shengzhi Dong & Alexander J. Gillett & Haoqing Guo & Yingxin Chen & Timothy J. H. Hele & Richard H. Friend & Feng Li, 2018. "Efficient radical-based light-emitting diodes with doublet emission," Nature, Nature, vol. 563(7732), pages 536-540, November.
    2. Xiang Shi & Yong Zuo & Peng Zhai & Jiahao Shen & Yangyiwei Yang & Zhen Gao & Meng Liao & Jingxia Wu & Jiawei Wang & Xiaojie Xu & Qi Tong & Bo Zhang & Bingjie Wang & Xuemei Sun & Lihua Zhang & Qibing P, 2021. "Large-area display textiles integrated with functional systems," Nature, Nature, vol. 591(7849), pages 240-245, March.
    3. Zhitao Zhang & Weichen Wang & Yuanwen Jiang & Yi-Xuan Wang & Yilei Wu & Jian-Cheng Lai & Simiao Niu & Chengyi Xu & Chien-Chung Shih & Cheng Wang & Hongping Yan & Luke Galuska & Nathaniel Prine & Hung-, 2022. "High-brightness all-polymer stretchable LED with charge-trapping dilution," Nature, Nature, vol. 603(7902), pages 624-630, March.
    4. Jun Li & Corey Carlos & Hao Zhou & Jiajie Sui & Yikai Wang & Zulmari Silva-Pedraza & Fan Yang & Yutao Dong & Ziyi Zhang & Timothy A. Hacker & Bo Liu & Yanchao Mao & Xudong Wang, 2023. "Stretchable piezoelectric biocrystal thin films," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Haoran Tang & Yuanying Liang & Chunchen Liu & Zhicheng Hu & Yifei Deng & Han Guo & Zidi Yu & Ao Song & Haiyang Zhao & Duokai Zhao & Yuanzhu Zhang & Xugang Guo & Jian Pei & Yuguang Ma & Yong Cao & Fei , 2022. "A solution-processed n-type conducting polymer with ultrahigh conductivity," Nature, Nature, vol. 611(7935), pages 271-277, November.
    6. Dehui Wang & Qiangqiang Sun & Matti J. Hokkanen & Chenglin Zhang & Fan-Yen Lin & Qiang Liu & Shun-Peng Zhu & Tianfeng Zhou & Qing Chang & Bo He & Quan Zhou & Longquan Chen & Zuankai Wang & Robin H. A., 2020. "Design of robust superhydrophobic surfaces," Nature, Nature, vol. 582(7810), pages 55-59, June.
    7. Sihong Wang & Jie Xu & Weichen Wang & Ging-Ji Nathan Wang & Reza Rastak & Francisco Molina-Lopez & Jong Won Chung & Simiao Niu & Vivian R. Feig & Jeffery Lopez & Ting Lei & Soon-Ki Kwon & Yeongin Kim , 2018. "Skin electronics from scalable fabrication of an intrinsically stretchable transistor array," Nature, Nature, vol. 555(7694), pages 83-88, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chenchen Zhou & Shuaishuai Liang & Bin Qi & Chenxu Liu & Nam-Joon Cho, 2024. "One-pot microfluidic fabrication of micro ceramic particles," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Haojie Lu & Yong Zhang & Mengjia Zhu & Shuo Li & Huarun Liang & Peng Bi & Shuai Wang & Haomin Wang & Linli Gan & Xun-En Wu & Yingying Zhang, 2024. "Intelligent perceptual textiles based on ionic-conductive and strong silk fibers," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Tiefeng Liu & Johanna Heimonen & Qilun Zhang & Chi-Yuan Yang & Jun-Da Huang & Han-Yan Wu & Marc-Antoine Stoeckel & Tom P. A. Pol & Yuxuan Li & Sang Young Jeong & Adam Marks & Xin-Yi Wang & Yuttapoom P, 2023. "Ground-state electron transfer in all-polymer donor:acceptor blends enables aqueous processing of water-insoluble conjugated polymers," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Chuanqian Shi & Jing Jiang & Chenglong Li & Chenhong Chen & Wei Jian & Jizhou Song, 2024. "Precision-induced localized molten liquid metal stamps for damage-free transfer printing of ultrathin membranes and 3D objects," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    5. Xiao-Xiang Chen & Jia-Tong Li & Yu-Hui Fang & Xin-Yu Deng & Xue-Qing Wang & Guangchao Liu & Yunfei Wang & Xiaodan Gu & Shang-Da Jiang & Ting Lei, 2022. "High-mobility semiconducting polymers with different spin ground states," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    6. Songlin Zhang & Mengjuan Zhou & Mingyang Liu & Zi Hao Guo & Hao Qu & Wenshuai Chen & Swee Ching Tan, 2023. "Ambient-conditions spinning of functional soft fibers via engineering molecular chain networks and phase separation," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    7. Mingyuan Mao & Jinfei Wei & Bucheng Li & Lingxiao Li & Xiaopeng Huang & Junping Zhang, 2024. "Scalable robust photothermal superhydrophobic coatings for efficient anti-icing and de-icing in simulated/real environments," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    8. Xueguang Lu & Feilong Zhang & Liguo Zhu & Shan Peng & Jiazhen Yan & Qiwu Shi & Kefan Chen & Xue Chang & Hongfu Zhu & Cheng Zhang & Wanxia Huang & Qiang Cheng, 2024. "A terahertz meta-sensor array for 2D strain mapping," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    9. Yangshuang Bian & Mingliang Zhu & Chengyu Wang & Kai Liu & Wenkang Shi & Zhiheng Zhu & Mingcong Qin & Fan Zhang & Zhiyuan Zhao & Hanlin Wang & Yunqi Liu & Yunlong Guo, 2024. "A detachable interface for stable low-voltage stretchable transistor arrays and high-resolution X-ray imaging," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    10. Wu, Yubo & Du, Jianqiang & Liu, Guangxin & Ma, Danzhu & Jia, Fengrui & Klemeš, Jiří Jaromír & Wang, Jin, 2022. "A review of self-cleaning technology to reduce dust and ice accumulation in photovoltaic power generation using superhydrophobic coating," Renewable Energy, Elsevier, vol. 185(C), pages 1034-1061.
    11. Lizhong Wang & Ze Tian & Guochen Jiang & Xiao Luo & Changhao Chen & Xinyu Hu & Hongjun Zhang & Minlin Zhong, 2022. "Spontaneous dewetting transitions of droplets during icing & melting cycle," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    12. Zehang Cui & Yachao Zhang & Zhicheng Zhang & Bingrui Liu & Yiyu Chen & Hao Wu & Yuxuan Zhang & Zilong Cheng & Guoqiang Li & Jiale Yong & Jiawen Li & Dong Wu & Jiaru Chu & Yanlei Hu, 2024. "Durable Janus membrane with on-demand mode switching fabricated by femtosecond laser," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    13. Yang Li & Nan Li & Wei Liu & Aleksander Prominski & Seounghun Kang & Yahao Dai & Youdi Liu & Huawei Hu & Shinya Wai & Shilei Dai & Zhe Cheng & Qi Su & Ping Cheng & Chen Wei & Lihua Jin & Jeffrey A. Hu, 2023. "Achieving tissue-level softness on stretchable electronics through a generalizable soft interlayer design," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    14. Arunkumar, T. & Parbat, Dibyangana & Lee, Sang Joon, 2024. "Comprehensive review of advanced desalination technologies for solar-powered all-day, all-weather freshwater harvesting systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    15. Jinfei Wei & Jiaojiao Zhang & Xiaojun Cao & Jinhui Huo & Xiaopeng Huang & Junping Zhang, 2023. "Durable superhydrophobic coatings for prevention of rain attenuation of 5G/weather radomes," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    16. Dongxu Ma & Ming Ji & Hongbo Yi & Qingyu Wang & Fu Fan & Bo Feng & Mengjie Zheng & Yiqin Chen & Huigao Duan, 2024. "Pushing the thinness limit of silver films for flexible optoelectronic devices via ion-beam thinning-back process," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    17. Himchan Oh & Ji-Young Oh & Chan Woo Park & Jae-Eun Pi & Jong-Heon Yang & Chi-Sun Hwang, 2022. "High density integration of stretchable inorganic thin film transistors with excellent performance and reliability," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    18. Hu, Haitao & Zhao, Yaxin & Li, Yuhan, 2023. "Research progress on flow and heat transfer characteristics of fluids in metal foams," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    19. Xin Li & Yi-Lin Wang & Chan Chen & Yan-Yan Ren & Ying-Feng Han, 2022. "A platform for blue-luminescent carbon-centered radicals," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    20. Hyukmin Kweon & Keun-Yeong Choi & Han Wool Park & Ryungyu Lee & Ukjin Jeong & Min Jung Kim & Hyunmin Hong & Borina Ha & Sein Lee & Jang-Yeon Kwon & Kwun-Bum Chung & Moon Sung Kang & Hojin Lee & Do Hwa, 2022. "Silicone engineered anisotropic lithography for ultrahigh-density OLEDs," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:11:p:2627-:d:1404763. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.