IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-45928-2.html
   My bibliography  Save this article

Unraveling the role of vaporization momentum in self-jumping dynamics of freezing supercooled droplets at reduced pressures

Author

Listed:
  • Xiao Yan

    (Hong Kong University of Science and Technology
    Chongqing University, Ministry of Education
    Chongqing University)

  • Samuel C. Y. Au

    (Hong Kong University of Science and Technology)

  • Sui Cheong Chan

    (Hong Kong University of Science and Technology)

  • Ying Lung Chan

    (Hong Kong University of Science and Technology)

  • Ngai Chun Leung

    (Hong Kong University of Science and Technology)

  • Wa Yat Wu

    (Hong Kong University of Science and Technology)

  • Dixon T. Sin

    (Hong Kong University of Science and Technology)

  • Guanlei Zhao

    (Tsinghua University)

  • Casper H. Y. Chung

    (Hong Kong University of Science and Technology)

  • Mei Mei

    (Hong Kong University of Science and Technology)

  • Yinchuang Yang

    (Hong Kong University of Science and Technology)

  • Huihe Qiu

    (Hong Kong University of Science and Technology)

  • Shuhuai Yao

    (Hong Kong University of Science and Technology
    HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute)

Abstract

Supercooling of water complicates phase change dynamics, the understanding of which remains limited yet vital to energy-related and aerospace processes. Here, we investigate the freezing and jumping dynamics of supercooled water droplets on superhydrophobic surfaces, induced by a remarkable vaporization momentum, in a low-pressure environment. The vaporization momentum arises from the vaporization at droplet’s free surface, progressed and intensified by recalescence, subsequently inducing droplet compression and finally self-jumping. By incorporating liquid-gas-solid phase changes involving vaporization, freezing recalescence, and liquid-solid interactions, we resolve the vaporization momentum and droplet dynamics, revealing a size-scaled jumping velocity and a nucleation-governed jumping direction. A droplet-size-defined regime map is established, distinguishing the vaporization-momentum-dominated self-jumping from evaporative drying and overpressure-initiated levitation, all induced by depressurization and vaporization. Our findings illuminate the role of supercooling and low-pressure mediated phase change in shaping fluid transport dynamics, with implications for passive anti-icing, advanced cooling, and climate physics.

Suggested Citation

  • Xiao Yan & Samuel C. Y. Au & Sui Cheong Chan & Ying Lung Chan & Ngai Chun Leung & Wa Yat Wu & Dixon T. Sin & Guanlei Zhao & Casper H. Y. Chung & Mei Mei & Yinchuang Yang & Huihe Qiu & Shuhuai Yao, 2024. "Unraveling the role of vaporization momentum in self-jumping dynamics of freezing supercooled droplets at reduced pressures," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45928-2
    DOI: 10.1038/s41467-024-45928-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-45928-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-45928-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Armin Kalita & Maximillian Mrozek-McCourt & Thomas F. Kaldawi & Philip R. Willmott & N. Duane Loh & Sebastian Marte & Raymond G. Sierra & Hartawan Laksmono & Jason E. Koglin & Matt J. Hayes & Robert H, 2023. "Microstructure and crystal order during freezing of supercooled water drops," Nature, Nature, vol. 620(7974), pages 557-561, August.
    2. Thomas M. Schutzius & Stefan Jung & Tanmoy Maitra & Gustav Graeber & Moritz Köhme & Dimos Poulikakos, 2015. "Spontaneous droplet trampolining on rigid superhydrophobic surfaces," Nature, Nature, vol. 527(7576), pages 82-85, November.
    3. Denis Richard & Christophe Clanet & David Quéré, 2002. "Contact time of a bouncing drop," Nature, Nature, vol. 417(6891), pages 811-811, June.
    4. Guoying Bai & Dong Gao & Zhang Liu & Xin Zhou & Jianjun Wang, 2019. "Probing the critical nucleus size for ice formation with graphene oxide nanosheets," Nature, Nature, vol. 576(7787), pages 437-441, December.
    5. Tak-Sing Wong & Sung Hoon Kang & Sindy K. Y. Tang & Elizabeth J. Smythe & Benjamin D. Hatton & Alison Grinthal & Joanna Aizenberg, 2011. "Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity," Nature, Nature, vol. 477(7365), pages 443-447, September.
    6. Dehui Wang & Qiangqiang Sun & Matti J. Hokkanen & Chenglin Zhang & Fan-Yen Lin & Qiang Liu & Shun-Peng Zhu & Tianfeng Zhou & Qing Chang & Bo He & Quan Zhou & Longquan Chen & Zuankai Wang & Robin H. A., 2020. "Design of robust superhydrophobic surfaces," Nature, Nature, vol. 582(7810), pages 55-59, June.
    7. Dalili, N. & Edrisy, A. & Carriveau, R., 2009. "A review of surface engineering issues critical to wind turbine performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(2), pages 428-438, February.
    8. Lizhong Wang & Ze Tian & Guochen Jiang & Xiao Luo & Changhao Chen & Xinyu Hu & Hongjun Zhang & Minlin Zhong, 2022. "Spontaneous dewetting transitions of droplets during icing & melting cycle," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    9. Stefan Jung & Manish K. Tiwari & N. Vuong Doan & Dimos Poulikakos, 2012. "Mechanism of supercooled droplet freezing on surfaces," Nature Communications, Nature, vol. 3(1), pages 1-8, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fuqiang Chu & Shuxin Li & Canjun Zhao & Yanhui Feng & Yukai Lin & Xiaomin Wu & Xiao Yan & Nenad Miljkovic, 2024. "Interfacial ice sprouting during salty water droplet freezing," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Shengteng Zhao & Zhichao Ma & Mingkai Song & Libo Tan & Hongwei Zhao & Luquan Ren, 2023. "Golden section criterion to achieve droplet trampoline effect on metal-based superhydrophobic surface," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Yanhong Li & Wenchang Zhao & Ying Zhou & Shuxian Tang & Shiyu Wang & Yutong Zheng & Zuankai Wang & Pingan Zhu, 2024. "Ultrafast bounce of particle-laden droplets," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Mingyuan Mao & Jinfei Wei & Bucheng Li & Lingxiao Li & Xiaopeng Huang & Junping Zhang, 2024. "Scalable robust photothermal superhydrophobic coatings for efficient anti-icing and de-icing in simulated/real environments," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    5. Lizhong Wang & Ze Tian & Guochen Jiang & Xiao Luo & Changhao Chen & Xinyu Hu & Hongjun Zhang & Minlin Zhong, 2022. "Spontaneous dewetting transitions of droplets during icing & melting cycle," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    6. Ma, Liqun & Zhang, Zichen & Gao, Linyue & Liu, Yang & Hu, Hui, 2020. "An exploratory study on using Slippery-Liquid-Infused-Porous-Surface (SLIPS) for wind turbine icing mitigation," Renewable Energy, Elsevier, vol. 162(C), pages 2344-2360.
    7. Zhipeng Zhao & Huizeng Li & An Li & Wei Fang & Zheren Cai & Mingzhu Li & Xiqiao Feng & Yanlin Song, 2021. "Breaking the symmetry to suppress the Plateau–Rayleigh instability and optimize hydropower utilization," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    8. Jiawei Jiang & Yizhou Shen & Yangjiangshan Xu & Zhen Wang & Jie Tao & Senyun Liu & Weilan Liu & Haifeng Chen, 2024. "An energy-free strategy to elevate anti-icing performance of superhydrophobic materials through interfacial airflow manipulation," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    9. Wancheng Gu & Wanbo Li & Yu Zhang & Yage Xia & Qiaoling Wang & Wei Wang & Ping Liu & Xinquan Yu & Hui He & Caihua Liang & Youxue Ban & Changwen Mi & Sha Yang & Wei Liu & Miaomiao Cui & Xu Deng & Zuank, 2023. "Ultra-durable superhydrophobic cellular coatings," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    10. An Li & Huizeng Li & Sijia Lyu & Zhipeng Zhao & Luanluan Xue & Zheng Li & Kaixuan Li & Mingzhu Li & Chao Sun & Yanlin Song, 2023. "Tailoring vapor film beneath a Leidenfrost drop," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    11. Yuhang Dai & Minfei Li & Bingqiang Ji & Xiong Wang & Siyan Yang & Peng Yu & Steven Wang & Chonglei Hao & Zuankai Wang, 2023. "Liquid metal droplets bouncing higher on thicker water layer," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    12. Ying Zhou & Chenguang Zhang & Wenchang Zhao & Shiyu Wang & Pingan Zhu, 2023. "Suppression of hollow droplet rebound on super-repellent surfaces," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    13. Liu, W.Y. & Zhang, W.H. & Han, J.G. & Wang, G.F., 2012. "A new wind turbine fault diagnosis method based on the local mean decomposition," Renewable Energy, Elsevier, vol. 48(C), pages 411-415.
    14. Zhang, P. & Lv, F.Y., 2015. "A review of the recent advances in superhydrophobic surfaces and the emerging energy-related applications," Energy, Elsevier, vol. 82(C), pages 1068-1087.
    15. Tang, Baoping & Liu, Wenyi & Song, Tao, 2010. "Wind turbine fault diagnosis based on Morlet wavelet transformation and Wigner-Ville distribution," Renewable Energy, Elsevier, vol. 35(12), pages 2862-2866.
    16. Meng Li & Nifang Zhao & Anran Mao & Mengning Wang & Ziyu Shao & Weiwei Gao & Hao Bai, 2023. "Preferential ice growth on grooved surface for crisscross-aligned graphene aerogel with large negative Poisson’s ratio," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    17. Moura Carneiro, F.O. & Barbosa Rocha, H.H. & Costa Rocha, P.A., 2013. "Investigation of possible societal risk associated with wind power generation systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 30-36.
    18. Han Xue & Linhai Li & Yiqun Wang & Youhua Lu & Kai Cui & Zhiyuan He & Guoying Bai & Jie Liu & Xin Zhou & Jianjun Wang, 2024. "Probing the critical nucleus size in tetrahydrofuran clathrate hydrate formation using surface-anchored nanoparticles," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    19. Wu, Yubo & Du, Jianqiang & Liu, Guangxin & Ma, Danzhu & Jia, Fengrui & Klemeš, Jiří Jaromír & Wang, Jin, 2022. "A review of self-cleaning technology to reduce dust and ice accumulation in photovoltaic power generation using superhydrophobic coating," Renewable Energy, Elsevier, vol. 185(C), pages 1034-1061.
    20. Haohao Gu & Kaixin Meng & Ruowei Yuan & Siyang Xiao & Yuying Shan & Rui Zhu & Yajun Deng & Xiaojin Luo & Ruijie Li & Lei Liu & Xu Chen & Yuping Shi & Xiaodong Wang & Chuanhua Duan & Hao Wang, 2024. "Rewritable printing of ionic liquid nanofilm utilizing focused ion beam induced film wetting," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45928-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.