IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v237y2024ipbs0960148124018688.html
   My bibliography  Save this article

Durable and multifunctional coating design with superhydrophobicity, high transparency, radiative cooling for photovoltaic application

Author

Listed:
  • Liu, Enchang
  • Sun, Minghong
  • Wu, Meijing
  • Yang, Yue

Abstract

The market-dominant silicon-based solar cells are facing great challenges in further improving their benchmark efficiency. However, due to dust deposition and temperature rise, the actual operating efficiency is still far from the benchmark efficiency. The goal of this study is to develop a durable and multifunctional coating with superhydrophobicity, high light transmittance and strong infrared radiation, which is applied to the surface of photovoltaic glass to reduce dust deposition and lower the module temperature. Based on a silicon wafer template and die casting process, epoxy resin microcavities are prepared on the glass surface, and SiO2 nanoparticles are sprayed into the microcavities to complete the preparation of the multifunctional coating. The experimental test results show that the coating has a contact angle of about 160°, a visible transmittance over 91 %, and an infrared emissivity of 94.5 % among the atmospheric window, demonstrating the potential of self-cleaning and radiative cooling functions. The coating also shows good durability through sandpaper wear, scraper wear, tape peeling, and water jet tests. The multifunctional coating developed in this study is expected to be applied to different types of photovoltaic cells to improve their photoelectric conversion efficiency in outdoor environments.

Suggested Citation

  • Liu, Enchang & Sun, Minghong & Wu, Meijing & Yang, Yue, 2024. "Durable and multifunctional coating design with superhydrophobicity, high transparency, radiative cooling for photovoltaic application," Renewable Energy, Elsevier, vol. 237(PB).
  • Handle: RePEc:eee:renene:v:237:y:2024:i:pb:s0960148124018688
    DOI: 10.1016/j.renene.2024.121800
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124018688
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121800?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:237:y:2024:i:pb:s0960148124018688. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.