IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v582y2020i7810d10.1038_s41586-020-2331-8.html
   My bibliography  Save this article

Design of robust superhydrophobic surfaces

Author

Listed:
  • Dehui Wang

    (University of Electronic Science and Technology of China)

  • Qiangqiang Sun

    (University of Electronic Science and Technology of China)

  • Matti J. Hokkanen

    (Aalto University School of Science
    Aalto University School of Electrical Engineering)

  • Chenglin Zhang

    (University of Electronic Science and Technology of China)

  • Fan-Yen Lin

    (Bruker Nano Surfaces Division)

  • Qiang Liu

    (University of Electronic Science and Technology of China)

  • Shun-Peng Zhu

    (University of Electronic Science and Technology of China)

  • Tianfeng Zhou

    (Beijing Institute of Technology)

  • Qing Chang

    (Hanergy Chengdu R&D Center)

  • Bo He

    (Hanergy Chengdu R&D Center)

  • Quan Zhou

    (Aalto University School of Electrical Engineering)

  • Longquan Chen

    (University of Electronic Science and Technology of China)

  • Zuankai Wang

    (City University of Hong Kong)

  • Robin H. A. Ras

    (Aalto University School of Science
    Aalto University School of Chemical Engineering)

  • Xu Deng

    (University of Electronic Science and Technology of China)

Abstract

The ability of superhydrophobic surfaces to stay dry, self-clean and avoid biofouling is attractive for applications in biotechnology, medicine and heat transfer1–10. Water droplets that contact these surfaces must have large apparent contact angles (greater than 150 degrees) and small roll-off angles (less than 10 degrees). This can be realized for surfaces that have low-surface-energy chemistry and micro- or nanoscale surface roughness, minimizing contact between the liquid and the solid surface11–17. However, rough surfaces—for which only a small fraction of the overall area is in contact with the liquid—experience high local pressures under mechanical load, making them fragile and highly susceptible to abrasion18. Additionally, abrasion exposes underlying materials and may change the local nature of the surface from hydrophobic to hydrophilic19, resulting in the pinning of water droplets to the surface. It has therefore been assumed that mechanical robustness and water repellency are mutually exclusive surface properties. Here we show that robust superhydrophobicity can be realized by structuring surfaces at two different length scales, with a nanostructure design to provide water repellency and a microstructure design to provide durability. The microstructure is an interconnected surface frame containing ‘pockets’ that house highly water-repellent and mechanically fragile nanostructures. This surface frame acts as ‘armour’, preventing the removal of the nanostructures by abradants that are larger than the frame size. We apply this strategy to various substrates—including silicon, ceramic, metal and transparent glass—and show that the water repellency of the resulting superhydrophobic surfaces is preserved even after abrasion by sandpaper and by a sharp steel blade. We suggest that this transparent, mechanically robust, self-cleaning glass could help to negate the dust-contamination issue that leads to a loss of efficiency in solar cells. Our design strategy could also guide the development of other materials that need to retain effective self-cleaning, anti-fouling or heat-transfer abilities in harsh operating environments.

Suggested Citation

  • Dehui Wang & Qiangqiang Sun & Matti J. Hokkanen & Chenglin Zhang & Fan-Yen Lin & Qiang Liu & Shun-Peng Zhu & Tianfeng Zhou & Qing Chang & Bo He & Quan Zhou & Longquan Chen & Zuankai Wang & Robin H. A., 2020. "Design of robust superhydrophobic surfaces," Nature, Nature, vol. 582(7810), pages 55-59, June.
  • Handle: RePEc:nat:nature:v:582:y:2020:i:7810:d:10.1038_s41586-020-2331-8
    DOI: 10.1038/s41586-020-2331-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-020-2331-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-020-2331-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hu, Haitao & Zhao, Yaxin & Li, Yuhan, 2023. "Research progress on flow and heat transfer characteristics of fluids in metal foams," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    2. Xiao Yan & Samuel C. Y. Au & Sui Cheong Chan & Ying Lung Chan & Ngai Chun Leung & Wa Yat Wu & Dixon T. Sin & Guanlei Zhao & Casper H. Y. Chung & Mei Mei & Yinchuang Yang & Huihe Qiu & Shuhuai Yao, 2024. "Unraveling the role of vaporization momentum in self-jumping dynamics of freezing supercooled droplets at reduced pressures," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Xiong Lin & Chen–Yu Li & Lu–Xuan Liang & Qing–Yun Guo & Yongzheng Zhang & Si–Rui Fu & Qin Zhang & Feng Chen & Di Han & Qiang Fu, 2024. "Organic–inorganic covalent–ionic network enabled all–in–one multifunctional coating for flexible displays," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    4. Wancheng Gu & Wanbo Li & Yu Zhang & Yage Xia & Qiaoling Wang & Wei Wang & Ping Liu & Xinquan Yu & Hui He & Caihua Liang & Youxue Ban & Changwen Mi & Sha Yang & Wei Liu & Miaomiao Cui & Xu Deng & Zuank, 2023. "Ultra-durable superhydrophobic cellular coatings," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. Mingyuan Mao & Jinfei Wei & Bucheng Li & Lingxiao Li & Xiaopeng Huang & Junping Zhang, 2024. "Scalable robust photothermal superhydrophobic coatings for efficient anti-icing and de-icing in simulated/real environments," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    6. Sun, Haoyang & Li, Tao & Sha, Lyu & Chen, Fengfan & Li, Maoning & Yang, Ye & Li, Bin & Li, Dandan & Sun, Dazhi, 2023. "Comparative of diatom frustules, diatomite, and silica particles for constructing self-healing superhydrophobic materials with capacity for thermal energy storage," Applied Energy, Elsevier, vol. 332(C).
    7. Sun, Wen & Wei, Yutong & Feng, Yanhui & Chu, Fuqiang, 2024. "Anti-icing and deicing characteristics of photothermal superhydrophobic surfaces based on metal nanoparticles and carbon nanotube materials," Energy, Elsevier, vol. 286(C).
    8. Zong-Lin Li & Kun Chen & Fei Li & Zhi-Jun Shi & Qi-Li Sun & Peng-Qi Li & Yu-Gui Peng & Lai-Xin Huang & Guang Yang & Hairong Zheng & Xue-Feng Zhu, 2023. "Decorated bacteria-cellulose ultrasonic metasurface," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    9. Adil Majeed Rather & Sravanthi Vallabhuneni & Austin J. Pyrch & Mohammed Barrubeeah & Sreekiran Pillai & Arsalan Taassob & Felix N. Castellano & Arun Kumar Kota, 2024. "Color morphing surfaces with effective chemical shielding," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    10. Arunkumar, T. & Parbat, Dibyangana & Lee, Sang Joon, 2024. "Comprehensive review of advanced desalination technologies for solar-powered all-day, all-weather freshwater harvesting systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    11. Muhammad Jahidul Hoque & Longnan Li & Jingcheng Ma & Hyeongyun Cha & Soumyadip Sett & Xiao Yan & Kazi Fazle Rabbi & Jin Yao Ho & Siavash Khodakarami & Jason Suwala & Wentao Yang & Omid Mohammadmoradi , 2023. "Ultra-resilient multi-layer fluorinated diamond like carbon hydrophobic surfaces," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    12. Jinfei Wei & Jiaojiao Zhang & Xiaojun Cao & Jinhui Huo & Xiaopeng Huang & Junping Zhang, 2023. "Durable superhydrophobic coatings for prevention of rain attenuation of 5G/weather radomes," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    13. Shengteng Zhao & Zhichao Ma & Mingkai Song & Libo Tan & Hongwei Zhao & Luquan Ren, 2023. "Golden section criterion to achieve droplet trampoline effect on metal-based superhydrophobic surface," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    14. Chen Ma & Li Chen & Lin Wang & Wei Tong & Chenlei Chu & Zhiping Yuan & Cunjing Lv & Quanshui Zheng, 2022. "Condensation droplet sieve," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    15. Wu, Yubo & Du, Jianqiang & Liu, Guangxin & Ma, Danzhu & Jia, Fengrui & Klemeš, Jiří Jaromír & Wang, Jin, 2022. "A review of self-cleaning technology to reduce dust and ice accumulation in photovoltaic power generation using superhydrophobic coating," Renewable Energy, Elsevier, vol. 185(C), pages 1034-1061.
    16. Maria Cannio & Dino Norberto Boccaccini & Stefano Caporali & Rosa Taurino, 2024. "Superhydrophobic Materials from Waste: Innovative Approach," Clean Technol., MDPI, vol. 6(1), pages 1-23, March.
    17. Hakan Gürsu, 2024. "An Affordable System Solution for Enhancing Tree Survival in Dry Environments," Sustainability, MDPI, vol. 16(14), pages 1-32, July.
    18. Hong Xiang & Yongfu Li & Qinglong Liao & Lei Xia & Xiaodong Wu & Huang Zhou & Chunmei Li & Xing Fan, 2024. "Recent Advances in Smart Fabric-Type Wearable Electronics toward Comfortable Wearing," Energies, MDPI, vol. 17(11), pages 1-36, May.
    19. Lizhong Wang & Ze Tian & Guochen Jiang & Xiao Luo & Changhao Chen & Xinyu Hu & Hongjun Zhang & Minlin Zhong, 2022. "Spontaneous dewetting transitions of droplets during icing & melting cycle," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    20. Jiafeng Jin & Jinsheng Sun & Kesheng Rong & Kaihe Lv & Tuan A. H. Nguyen & Ren Wang & Xianbin Huang & Yingrui Bai & Jingping Liu & Jintang Wang, 2020. "Gas-Wetting Alteration by Fluorochemicals and Its Application for Enhancing Gas Recovery in Gas-Condensate Reservoirs: A Review," Energies, MDPI, vol. 13(18), pages 1-23, September.
    21. Zehang Cui & Yachao Zhang & Zhicheng Zhang & Bingrui Liu & Yiyu Chen & Hao Wu & Yuxuan Zhang & Zilong Cheng & Guoqiang Li & Jiale Yong & Jiawen Li & Dong Wu & Jiaru Chu & Yanlei Hu, 2024. "Durable Janus membrane with on-demand mode switching fabricated by femtosecond laser," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:582:y:2020:i:7810:d:10.1038_s41586-020-2331-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.