IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-28036-x.html
   My bibliography  Save this article

Spontaneous dewetting transitions of droplets during icing & melting cycle

Author

Listed:
  • Lizhong Wang

    (Joint Research Center for Advanced Materials & Anti-icing of Tsinghua University (SMSE)-AVIC SARI, School of Materials Science and Engineering, Tsinghua University)

  • Ze Tian

    (Joint Research Center for Advanced Materials & Anti-icing of Tsinghua University (SMSE)-AVIC SARI, School of Materials Science and Engineering, Tsinghua University)

  • Guochen Jiang

    (Joint Research Center for Advanced Materials & Anti-icing of Tsinghua University (SMSE)-AVIC SARI, School of Materials Science and Engineering, Tsinghua University)

  • Xiao Luo

    (Joint Research Center for Advanced Materials & Anti-icing of Tsinghua University (SMSE)-AVIC SARI, School of Materials Science and Engineering, Tsinghua University)

  • Changhao Chen

    (Joint Research Center for Advanced Materials & Anti-icing of Tsinghua University (SMSE)-AVIC SARI, School of Materials Science and Engineering, Tsinghua University)

  • Xinyu Hu

    (Joint Research Center for Advanced Materials & Anti-icing of Tsinghua University (SMSE)-AVIC SARI, School of Materials Science and Engineering, Tsinghua University)

  • Hongjun Zhang

    (Joint Research Center for Advanced Materials & Anti-icing of Tsinghua University (SMSE)-AVIC SARI, School of Materials Science and Engineering, Tsinghua University)

  • Minlin Zhong

    (Joint Research Center for Advanced Materials & Anti-icing of Tsinghua University (SMSE)-AVIC SARI, School of Materials Science and Engineering, Tsinghua University)

Abstract

Anti-icing superhydrophobic surfaces have been a key research topic due to their potential application value in aviation, telecommunication, energy, etc. However, superhydrophobicity is easily lost during icing & melting cycles, where the water-repellent Cassie-Baxter state turns to the sticky Wenzel state. The reversible transition during icing & melting cycle without external assistance is challenging but vital for reliable anti-icing superhydrophobic performance, such a topic has rarely been reported. Here we demonstrate a spontaneous Wenzel to Cassie-Baxter dewetting transition during icing & melting cycle on well-designed superhydrophobic surfaces. Bubbles in ice droplets rapidly impact the micro-nano valleys under Marangoni force, prompting the continuous recovery of air pockets during melting processes. We establish models to confirm the bubbles movement broadens the dewetting conditions greatly and present three criteria for the dewetting transitions. This research deepens the understanding of wettability theory and extends the design of anti-icing superhydrophobic surfaces.

Suggested Citation

  • Lizhong Wang & Ze Tian & Guochen Jiang & Xiao Luo & Changhao Chen & Xinyu Hu & Hongjun Zhang & Minlin Zhong, 2022. "Spontaneous dewetting transitions of droplets during icing & melting cycle," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28036-x
    DOI: 10.1038/s41467-022-28036-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-28036-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-28036-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tak-Sing Wong & Sung Hoon Kang & Sindy K. Y. Tang & Elizabeth J. Smythe & Benjamin D. Hatton & Alison Grinthal & Joanna Aizenberg, 2011. "Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity," Nature, Nature, vol. 477(7365), pages 443-447, September.
    2. Dehui Wang & Qiangqiang Sun & Matti J. Hokkanen & Chenglin Zhang & Fan-Yen Lin & Qiang Liu & Shun-Peng Zhu & Tianfeng Zhou & Qing Chang & Bo He & Quan Zhou & Longquan Chen & Zuankai Wang & Robin H. A., 2020. "Design of robust superhydrophobic surfaces," Nature, Nature, vol. 582(7810), pages 55-59, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiao Yan & Samuel C. Y. Au & Sui Cheong Chan & Ying Lung Chan & Ngai Chun Leung & Wa Yat Wu & Dixon T. Sin & Guanlei Zhao & Casper H. Y. Chung & Mei Mei & Yinchuang Yang & Huihe Qiu & Shuhuai Yao, 2024. "Unraveling the role of vaporization momentum in self-jumping dynamics of freezing supercooled droplets at reduced pressures," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Lei Li & Yiqian Zhou & Yang Gao & Xuning Feng & Fangshu Zhang & Weiwei Li & Bin Zhu & Ze Tian & Peixun Fan & Minlin Zhong & Huichang Niu & Shanyu Zhao & Xiaoding Wei & Jia Zhu & Hui Wu, 2023. "Large-scale assembly of isotropic nanofiber aerogels based on columnar-equiaxed crystal transition," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Fuqiang Chu & Shuxin Li & Canjun Zhao & Yanhui Feng & Yukai Lin & Xiaomin Wu & Xiao Yan & Nenad Miljkovic, 2024. "Interfacial ice sprouting during salty water droplet freezing," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Shengteng Zhao & Zhichao Ma & Mingkai Song & Libo Tan & Hongwei Zhao & Luquan Ren, 2023. "Golden section criterion to achieve droplet trampoline effect on metal-based superhydrophobic surface," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiao Yan & Samuel C. Y. Au & Sui Cheong Chan & Ying Lung Chan & Ngai Chun Leung & Wa Yat Wu & Dixon T. Sin & Guanlei Zhao & Casper H. Y. Chung & Mei Mei & Yinchuang Yang & Huihe Qiu & Shuhuai Yao, 2024. "Unraveling the role of vaporization momentum in self-jumping dynamics of freezing supercooled droplets at reduced pressures," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Zhang, P. & Lv, F.Y., 2015. "A review of the recent advances in superhydrophobic surfaces and the emerging energy-related applications," Energy, Elsevier, vol. 82(C), pages 1068-1087.
    3. Wu, Yubo & Du, Jianqiang & Liu, Guangxin & Ma, Danzhu & Jia, Fengrui & Klemeš, Jiří Jaromír & Wang, Jin, 2022. "A review of self-cleaning technology to reduce dust and ice accumulation in photovoltaic power generation using superhydrophobic coating," Renewable Energy, Elsevier, vol. 185(C), pages 1034-1061.
    4. Haohao Gu & Kaixin Meng & Ruowei Yuan & Siyang Xiao & Yuying Shan & Rui Zhu & Yajun Deng & Xiaojin Luo & Ruijie Li & Lei Liu & Xu Chen & Yuping Shi & Xiaodong Wang & Chuanhua Duan & Hao Wang, 2024. "Rewritable printing of ionic liquid nanofilm utilizing focused ion beam induced film wetting," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    5. Zehang Cui & Yachao Zhang & Zhicheng Zhang & Bingrui Liu & Yiyu Chen & Hao Wu & Yuxuan Zhang & Zilong Cheng & Guoqiang Li & Jiale Yong & Jiawen Li & Dong Wu & Jiaru Chu & Yanlei Hu, 2024. "Durable Janus membrane with on-demand mode switching fabricated by femtosecond laser," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    6. Arunkumar, T. & Parbat, Dibyangana & Lee, Sang Joon, 2024. "Comprehensive review of advanced desalination technologies for solar-powered all-day, all-weather freshwater harvesting systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    7. Jinfei Wei & Jiaojiao Zhang & Xiaojun Cao & Jinhui Huo & Xiaopeng Huang & Junping Zhang, 2023. "Durable superhydrophobic coatings for prevention of rain attenuation of 5G/weather radomes," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    8. Kuanfu Chen & Yujie Tao & Weiwei Shi, 2022. "Recent Advances in Water Harvesting: A Review of Materials, Devices and Applications," Sustainability, MDPI, vol. 14(10), pages 1-25, May.
    9. Hu, Haitao & Zhao, Yaxin & Li, Yuhan, 2023. "Research progress on flow and heat transfer characteristics of fluids in metal foams," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    10. John P. Ulhøi, 2021. "From innovation-as-usual towards unusual innovation: using nature as an inspiration," Journal of Innovation and Entrepreneurship, Springer, vol. 10(1), pages 1-21, December.
    11. Adil Majeed Rather & Sravanthi Vallabhuneni & Austin J. Pyrch & Mohammed Barrubeeah & Sreekiran Pillai & Arsalan Taassob & Felix N. Castellano & Arun Kumar Kota, 2024. "Color morphing surfaces with effective chemical shielding," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    12. Chen Ma & Li Chen & Lin Wang & Wei Tong & Chenlei Chu & Zhiping Yuan & Cunjing Lv & Quanshui Zheng, 2022. "Condensation droplet sieve," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    13. Ma, Liqun & Zhang, Zichen & Gao, Linyue & Liu, Yang & Hu, Hui, 2020. "An exploratory study on using Slippery-Liquid-Infused-Porous-Surface (SLIPS) for wind turbine icing mitigation," Renewable Energy, Elsevier, vol. 162(C), pages 2344-2360.
    14. Abdel Hakim Abou Yassine & Ehsan Khoshbakhtnejad & Hossein Sojoudi, 2024. "Economics of Snow Accumulation on Photovoltaic Modules," Energies, MDPI, vol. 17(12), pages 1-18, June.
    15. Haobo Xu & Yimin Zhou & Dan Daniel & Joshua Herzog & Xiaoguang Wang & Volker Sick & Solomon Adera, 2023. "Droplet attraction and coalescence mechanism on textured oil-impregnated surfaces," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    16. Zong-Lin Li & Kun Chen & Fei Li & Zhi-Jun Shi & Qi-Li Sun & Peng-Qi Li & Yu-Gui Peng & Lai-Xin Huang & Guang Yang & Hairong Zheng & Xue-Feng Zhu, 2023. "Decorated bacteria-cellulose ultrasonic metasurface," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    17. Shengteng Zhao & Zhichao Ma & Mingkai Song & Libo Tan & Hongwei Zhao & Luquan Ren, 2023. "Golden section criterion to achieve droplet trampoline effect on metal-based superhydrophobic surface," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    18. Wancheng Gu & Wanbo Li & Yu Zhang & Yage Xia & Qiaoling Wang & Wei Wang & Ping Liu & Xinquan Yu & Hui He & Caihua Liang & Youxue Ban & Changwen Mi & Sha Yang & Wei Liu & Miaomiao Cui & Xu Deng & Zuank, 2023. "Ultra-durable superhydrophobic cellular coatings," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    19. Sun, Haoyang & Li, Tao & Sha, Lyu & Chen, Fengfan & Li, Maoning & Yang, Ye & Li, Bin & Li, Dandan & Sun, Dazhi, 2023. "Comparative of diatom frustules, diatomite, and silica particles for constructing self-healing superhydrophobic materials with capacity for thermal energy storage," Applied Energy, Elsevier, vol. 332(C).
    20. Al-Obaidi, Karam M. & Azzam Ismail, Muhammad & Hussein, Hazreena & Abdul Rahman, Abdul Malik, 2017. "Biomimetic building skins: An adaptive approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1472-1491.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28036-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.