IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-32873-1.html
   My bibliography  Save this article

Condensation droplet sieve

Author

Listed:
  • Chen Ma

    (Tsinghua University
    Tsinghua University)

  • Li Chen

    (Tsinghua University
    Tsinghua University)

  • Lin Wang

    (Tsinghua University
    Tsinghua University
    Research Institute of Tsinghua University in Shenzhen)

  • Wei Tong

    (Tsinghua University
    Tsinghua University
    Research Institute of Tsinghua University in Shenzhen)

  • Chenlei Chu

    (Tsinghua University
    Tsinghua University)

  • Zhiping Yuan

    (Tsinghua University
    Tsinghua University)

  • Cunjing Lv

    (Tsinghua University
    Tsinghua University)

  • Quanshui Zheng

    (Tsinghua University
    Tsinghua University
    Research Institute of Tsinghua University in Shenzhen
    Tsinghua University)

Abstract

Large droplets emerging during dropwise condensation impair surface properties such as anti-fogging/frosting ability and heat transfer efficiency. How to spontaneously detach massive randomly distributed droplets with controlled sizes has remained a challenge. Herein, we present a solution called condensation droplet sieve, through fabricating microscale thin-walled lattice structures coated with a superhydrophobic layer. Growing droplets were observed to jump off this surface once becoming slightly larger than the lattices. The maximum radius and residual volume of droplets were strictly confined to 16 μm and 3.2 nl/mm2 respectively. We reveal that this droplet radius cut off is attributed to the large tolerance of coalescence mismatch for jumping and effective isolation of droplets between neighboring lattices. Our work brings forth a strategy for the design and fabrication of high-performance anti-dew materials.

Suggested Citation

  • Chen Ma & Li Chen & Lin Wang & Wei Tong & Chenlei Chu & Zhiping Yuan & Cunjing Lv & Quanshui Zheng, 2022. "Condensation droplet sieve," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32873-1
    DOI: 10.1038/s41467-022-32873-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-32873-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-32873-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Pierre Lecointre & Sophia Laney & Martyna Michalska & Tao Li & Alexandre Tanguy & Ioannis Papakonstantinou & David Quéré, 2021. "Unique and universal dew-repellency of nanocones," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    2. Dehui Wang & Qiangqiang Sun & Matti J. Hokkanen & Chenglin Zhang & Fan-Yen Lin & Qiang Liu & Shun-Peng Zhu & Tianfeng Zhou & Qing Chang & Bo He & Quan Zhou & Longquan Chen & Zuankai Wang & Robin H. A., 2020. "Design of robust superhydrophobic surfaces," Nature, Nature, vol. 582(7810), pages 55-59, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shengteng Zhao & Zhichao Ma & Mingkai Song & Libo Tan & Hongwei Zhao & Luquan Ren, 2023. "Golden section criterion to achieve droplet trampoline effect on metal-based superhydrophobic surface," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Guoying Bai & Haiyan Zhang & Dong Gao & Houguo Fei & Cunlan Guo & Mingxia Ren & Yufeng Liu, 2024. "Controlled condensation by liquid contact-induced adaptations of molecular conformations in self-assembled monolayers," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wancheng Gu & Wanbo Li & Yu Zhang & Yage Xia & Qiaoling Wang & Wei Wang & Ping Liu & Xinquan Yu & Hui He & Caihua Liang & Youxue Ban & Changwen Mi & Sha Yang & Wei Liu & Miaomiao Cui & Xu Deng & Zuank, 2023. "Ultra-durable superhydrophobic cellular coatings," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Wu, Yubo & Du, Jianqiang & Liu, Guangxin & Ma, Danzhu & Jia, Fengrui & Klemeš, Jiří Jaromír & Wang, Jin, 2022. "A review of self-cleaning technology to reduce dust and ice accumulation in photovoltaic power generation using superhydrophobic coating," Renewable Energy, Elsevier, vol. 185(C), pages 1034-1061.
    3. Lizhong Wang & Ze Tian & Guochen Jiang & Xiao Luo & Changhao Chen & Xinyu Hu & Hongjun Zhang & Minlin Zhong, 2022. "Spontaneous dewetting transitions of droplets during icing & melting cycle," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    4. Zehang Cui & Yachao Zhang & Zhicheng Zhang & Bingrui Liu & Yiyu Chen & Hao Wu & Yuxuan Zhang & Zilong Cheng & Guoqiang Li & Jiale Yong & Jiawen Li & Dong Wu & Jiaru Chu & Yanlei Hu, 2024. "Durable Janus membrane with on-demand mode switching fabricated by femtosecond laser," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Arunkumar, T. & Parbat, Dibyangana & Lee, Sang Joon, 2024. "Comprehensive review of advanced desalination technologies for solar-powered all-day, all-weather freshwater harvesting systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    6. Jinfei Wei & Jiaojiao Zhang & Xiaojun Cao & Jinhui Huo & Xiaopeng Huang & Junping Zhang, 2023. "Durable superhydrophobic coatings for prevention of rain attenuation of 5G/weather radomes," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    7. Jing Lou & Songlin Shi & Chen Ma & Xiaohuan Zhou & Dong Huang & Quanshui Zheng & Cunjing Lv, 2022. "Polygonal non-wetting droplets on microtextured surfaces," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    8. Rothstein, Jesse, 2022. "Qualitative information in undergraduate admissions: A pilot study of letters of recommendation," Economics of Education Review, Elsevier, vol. 89(C).
    9. Hu, Haitao & Zhao, Yaxin & Li, Yuhan, 2023. "Research progress on flow and heat transfer characteristics of fluids in metal foams," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    10. Adil Majeed Rather & Sravanthi Vallabhuneni & Austin J. Pyrch & Mohammed Barrubeeah & Sreekiran Pillai & Arsalan Taassob & Felix N. Castellano & Arun Kumar Kota, 2024. "Color morphing surfaces with effective chemical shielding," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    11. Xiao Yan & Samuel C. Y. Au & Sui Cheong Chan & Ying Lung Chan & Ngai Chun Leung & Wa Yat Wu & Dixon T. Sin & Guanlei Zhao & Casper H. Y. Chung & Mei Mei & Yinchuang Yang & Huihe Qiu & Shuhuai Yao, 2024. "Unraveling the role of vaporization momentum in self-jumping dynamics of freezing supercooled droplets at reduced pressures," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    12. Zong-Lin Li & Kun Chen & Fei Li & Zhi-Jun Shi & Qi-Li Sun & Peng-Qi Li & Yu-Gui Peng & Lai-Xin Huang & Guang Yang & Hairong Zheng & Xue-Feng Zhu, 2023. "Decorated bacteria-cellulose ultrasonic metasurface," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    13. Shengteng Zhao & Zhichao Ma & Mingkai Song & Libo Tan & Hongwei Zhao & Luquan Ren, 2023. "Golden section criterion to achieve droplet trampoline effect on metal-based superhydrophobic surface," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    14. Sun, Haoyang & Li, Tao & Sha, Lyu & Chen, Fengfan & Li, Maoning & Yang, Ye & Li, Bin & Li, Dandan & Sun, Dazhi, 2023. "Comparative of diatom frustules, diatomite, and silica particles for constructing self-healing superhydrophobic materials with capacity for thermal energy storage," Applied Energy, Elsevier, vol. 332(C).
    15. Muhammad Jahidul Hoque & Longnan Li & Jingcheng Ma & Hyeongyun Cha & Soumyadip Sett & Xiao Yan & Kazi Fazle Rabbi & Jin Yao Ho & Siavash Khodakarami & Jason Suwala & Wentao Yang & Omid Mohammadmoradi , 2023. "Ultra-resilient multi-layer fluorinated diamond like carbon hydrophobic surfaces," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    16. Hong Xiang & Yongfu Li & Qinglong Liao & Lei Xia & Xiaodong Wu & Huang Zhou & Chunmei Li & Xing Fan, 2024. "Recent Advances in Smart Fabric-Type Wearable Electronics toward Comfortable Wearing," Energies, MDPI, vol. 17(11), pages 1-36, May.
    17. Maria Cannio & Dino Norberto Boccaccini & Stefano Caporali & Rosa Taurino, 2024. "Superhydrophobic Materials from Waste: Innovative Approach," Clean Technol., MDPI, vol. 6(1), pages 1-23, March.
    18. Hakan Gürsu, 2024. "An Affordable System Solution for Enhancing Tree Survival in Dry Environments," Sustainability, MDPI, vol. 16(14), pages 1-32, July.
    19. Jiafeng Jin & Jinsheng Sun & Kesheng Rong & Kaihe Lv & Tuan A. H. Nguyen & Ren Wang & Xianbin Huang & Yingrui Bai & Jingping Liu & Jintang Wang, 2020. "Gas-Wetting Alteration by Fluorochemicals and Its Application for Enhancing Gas Recovery in Gas-Condensate Reservoirs: A Review," Energies, MDPI, vol. 13(18), pages 1-23, September.
    20. Sun, Wen & Wei, Yutong & Feng, Yanhui & Chu, Fuqiang, 2024. "Anti-icing and deicing characteristics of photothermal superhydrophobic surfaces based on metal nanoparticles and carbon nanotube materials," Energy, Elsevier, vol. 286(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32873-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.