IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-47232-5.html
   My bibliography  Save this article

Switching the spin cycloid in BiFeO3 with an electric field

Author

Listed:
  • Peter Meisenheimer

    (University of California)

  • Guy Moore

    (University of California
    Lawrence Berkeley National Laboratory)

  • Shiyu Zhou

    (Brown University)

  • Hongrui Zhang

    (University of California)

  • Xiaoxi Huang

    (University of California)

  • Sajid Husain

    (University of California
    Lawrence Berkeley National Laboratory)

  • Xianzhe Chen

    (University of California
    Lawrence Berkeley National Laboratory)

  • Lane W. Martin

    (University of California
    Lawrence Berkeley National Laboratory
    Rice University
    Rice University)

  • Kristin A. Persson

    (University of California
    Lawrence Berkeley National Laboratory)

  • Sinéad Griffin

    (Lawrence Berkeley National Laboratory
    Lawrence Berkeley National Laboratory)

  • Lucas Caretta

    (Brown University)

  • Paul Stevenson

    (Northeastern University)

  • Ramamoorthy Ramesh

    (University of California
    Lawrence Berkeley National Laboratory
    Rice University
    University of California)

Abstract

Bismuth ferrite (BiFeO3) is a multiferroic material that exhibits both ferroelectricity and canted antiferromagnetism at room temperature, making it a unique candidate in the development of electric-field controllable magnetic devices. The magnetic moments in BiFeO3 are arranged into a spin cycloid, resulting in unique magnetic properties which are tied to the ferroelectric order. Previous understanding of this coupling has relied on average, mesoscale measurements. Using nitrogen vacancy-based diamond magnetometry, we observe the magnetic spin cycloid structure of BiFeO3 in real space. This structure is magnetoelectrically coupled through symmetry to the ferroelectric polarization and this relationship is maintained through electric field switching. Through a combination of in-plane and out-of-plane electrical switching, coupled with ab initio studies, we have discovered that the epitaxy from the substrate imposes a magnetoelastic anisotropy on the spin cycloid, which establishes preferred cycloid propagation directions. The energy landscape of the cycloid is shaped by both the ferroelectric degree of freedom and strain-induced anisotropy, restricting the spin spiral propagation vector to changes to specific switching events.

Suggested Citation

  • Peter Meisenheimer & Guy Moore & Shiyu Zhou & Hongrui Zhang & Xiaoxi Huang & Sajid Husain & Xianzhe Chen & Lane W. Martin & Kristin A. Persson & Sinéad Griffin & Lucas Caretta & Paul Stevenson & Ramam, 2024. "Switching the spin cycloid in BiFeO3 with an electric field," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47232-5
    DOI: 10.1038/s41467-024-47232-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-47232-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-47232-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. J. T. Heron & J. L. Bosse & Q. He & Y. Gao & M. Trassin & L. Ye & J. D. Clarkson & C. Wang & Jian Liu & S. Salahuddin & D. C. Ralph & D. G. Schlom & J. Íñiguez & B. D. Huey & R. Ramesh, 2014. "Deterministic switching of ferromagnetism at room temperature using an electric field," Nature, Nature, vol. 516(7531), pages 370-373, December.
    2. I. Gross & W. Akhtar & V. Garcia & L. J. Martínez & S. Chouaieb & K. Garcia & C. Carrétéro & A. Barthélémy & P. Appel & P. Maletinsky & J.-V. Kim & J. Y. Chauleau & N. Jaouen & M. Viret & M. Bibes & S, 2017. "Real-space imaging of non-collinear antiferromagnetic order with a single-spin magnetometer," Nature, Nature, vol. 549(7671), pages 252-256, September.
    3. Sasikanth Manipatruni & Dmitri E. Nikonov & Chia-Ching Lin & Tanay A. Gosavi & Huichu Liu & Bhagwati Prasad & Yen-Lin Huang & Everton Bonturim & Ramamoorthy Ramesh & Ian A. Young, 2019. "Scalable energy-efficient magnetoelectric spin–orbit logic," Nature, Nature, vol. 565(7737), pages 35-42, January.
    4. Y. Dovzhenko & F. Casola & S. Schlotter & T. X. Zhou & F. Büttner & R. L. Walsworth & G. S. D. Beach & A. Yacoby, 2018. "Magnetostatic twists in room-temperature skyrmions explored by nitrogen-vacancy center spin texture reconstruction," Nature Communications, Nature, vol. 9(1), pages 1-7, December.
    5. A. Haykal & J. Fischer & W. Akhtar & J.-Y. Chauleau & D. Sando & A. Finco & F. Godel & Y. A. Birkhölzer & C. Carrétéro & N. Jaouen & M. Bibes & M. Viret & S. Fusil & V. Jacques & V. Garcia, 2020. "Antiferromagnetic textures in BiFeO3 controlled by strain and electric field," Nature Communications, Nature, vol. 11(1), pages 1-7, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yahong Chai & Yuhan Liang & Cancheng Xiao & Yue Wang & Bo Li & Dingsong Jiang & Pratap Pal & Yongjian Tang & Hetian Chen & Yuejie Zhang & Hao Bai & Teng Xu & Wanjun Jiang & Witold Skowroński & Qinghua, 2024. "Voltage control of multiferroic magnon torque for reconfigurable logic-in-memory," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Sajid Husain & Isaac Harris & Peter Meisenheimer & Sukriti Mantri & Xinyan Li & Maya Ramesh & Piush Behera & Hossein Taghinejad & Jaegyu Kim & Pravin Kavle & Shiyu Zhou & Tae Yeon Kim & Hongrui Zhang , 2024. "Non-volatile magnon transport in a single domain multiferroic," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Qiwu Shi & Eric Parsonnet & Xiaoxing Cheng & Natalya Fedorova & Ren-Ci Peng & Abel Fernandez & Alexander Qualls & Xiaoxi Huang & Xue Chang & Hongrui Zhang & David Pesquera & Sujit Das & Dmitri Nikonov, 2022. "The role of lattice dynamics in ferroelectric switching," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Diogo C. Vaz & Chia-Ching Lin & John J. Plombon & Won Young Choi & Inge Groen & Isabel C. Arango & Andrey Chuvilin & Luis E. Hueso & Dmitri E. Nikonov & Hai Li & Punyashloka Debashis & Scott B. Clende, 2024. "Voltage-based magnetization switching and reading in magnetoelectric spin-orbit nanodevices," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    5. W. S. Huxter & M. L. Palm & M. L. Davis & P. Welter & C.-H. Lambert & M. Trassin & C. L. Degen, 2022. "Scanning gradiometry with a single spin quantum magnetometer," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    6. Shuai Xu & Jiesu Wang & Pan Chen & Kuijuan Jin & Cheng Ma & Shiyao Wu & Erjia Guo & Chen Ge & Can Wang & Xiulai Xu & Hongbao Yao & Jingyi Wang & Donggang Xie & Xinyan Wang & Kai Chang & Xuedong Bai & , 2023. "Magnetoelectric coupling in multiferroics probed by optical second harmonic generation," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    7. Jaeun Eom & In Hak Lee & Jung Yun Kee & Minhyun Cho & Jeongdae Seo & Hoyoung Suh & Hyung-Jin Choi & Yumin Sim & Shuzhang Chen & Hye Jung Chang & Seung-Hyub Baek & Cedomir Petrovic & Hyejin Ryu & Chaun, 2023. "Voltage control of magnetism in Fe3-xGeTe2/In2Se3 van der Waals ferromagnetic/ferroelectric heterostructures," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    8. Hun-Ho Kim & Kentaro Ueda & Suguru Nakata & Peter Wochner & Andrew Mackenzie & Clifford Hicks & Giniyat Khaliullin & Huimei Liu & Bernhard Keimer & Matteo Minola, 2022. "Giant stress response of terahertz magnons in a spin-orbit Mott insulator," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    9. Freddie Hendriks & Rafael R. Rojas-Lopez & Bert Koopmans & Marcos H. D. Guimarães, 2024. "Electric control of optically-induced magnetization dynamics in a van der Waals ferromagnetic semiconductor," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    10. Roméo Juge & Naveen Sisodia & Joseba Urrestarazu Larrañaga & Qiang Zhang & Van Tuong Pham & Kumari Gaurav Rana & Brice Sarpi & Nicolas Mille & Stefan Stanescu & Rachid Belkhou & Mohamad-Assaad Mawass , 2022. "Skyrmions in synthetic antiferromagnets and their nucleation via electrical current and ultra-fast laser illumination," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    11. Piyush Agarwal & Lisen Huang & Sze Lim & Ranjan Singh, 2022. "Electric-field control of nonlinear THz spintronic emitters," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    12. Sajid Husain & Isaac Harris & Guanhui Gao & Xinyan Li & Peter Meisenheimer & Chuqiao Shi & Pravin Kavle & Chi Hun Choi & Tae Yeon Kim & Deokyoung Kang & Piush Behera & Didier Perrodin & Hua Guo & Jame, 2024. "Low-temperature grapho-epitaxial La-substituted BiFeO3 on metallic perovskite," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    13. Rugang Geng & Adrian Mena & William J. Pappas & Dane R. McCamey, 2023. "Sub-micron spin-based magnetic field imaging with an organic light emitting diode," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    14. Qiang Li & Tian Miao & Huimin Zhang & Weiyan Lin & Wenhao He & Yang Zhong & Lifen Xiang & Lina Deng & Biying Ye & Qian Shi & Yinyan Zhu & Hangwen Guo & Wenbin Wang & Changlin Zheng & Lifeng Yin & Xiao, 2022. "Electronically phase separated nano-network in antiferromagnetic insulating LaMnO3/PrMnO3/CaMnO3 tricolor superlattice," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    15. Xianghan Xu & Yiqing Hao & Shiyu Peng & Qiang Zhang & Danrui Ni & Chen Yang & Xi Dai & Huibo Cao & R. J. Cava, 2023. "Large off-diagonal magnetoelectricity in a triangular Co2+-based collinear antiferromagnet," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    16. Julien Lévêque & Elisa Rebolini & Andrés Saúl & Marie-Bernadette Lepetit, 2021. "Theoretical study of the magnetic properties of BaNiF $$_4$$ 4," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(10), pages 1-9, October.
    17. Min-Gu Kang & Jong-Guk Choi & Jimin Jeong & Jae Yeol Park & Hyeon-Jong Park & Taehwan Kim & Taekhyeon Lee & Kab-Jin Kim & Kyoung-Whan Kim & Jung Hyun Oh & Duc Duong Viet & Jong-Ryul Jeong & Jong Min Y, 2021. "Electric-field control of field-free spin-orbit torque switching via laterally modulated Rashba effect in Pt/Co/AlOx structures," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    18. Dongsheng Yang & Taeheon Kim & Kyusup Lee & Chang Xu & Yakun Liu & Fei Wang & Shishun Zhao & Dushyant Kumar & Hyunsoo Yang, 2024. "Spin-orbit torque manipulation of sub-terahertz magnons in antiferromagnetic α-Fe2O3," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    19. Xiaochuan Ma & Yongliang Shi & Zhengwang Cheng & Xiaofeng Liu & Jianyi Liu & Ziyang Guo & Xuefeng Cui & Xia Sun & Jin Zhao & Shijing Tan & Bing Wang, 2024. "Unveiling diverse coordination-defined electronic structures of reconstructed anatase TiO2(001)-(1 × 4) surface," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    20. Jonghyeon Choi & Jungmin Park & Seunghyeon Noh & Jaebyeong Lee & Seunghyun Lee & Daeseong Choe & Hyeonjung Jung & Junhyeon Jo & Inseon Oh & Juwon Han & Soon-Yong Kwon & Chang Won Ahn & Byoung-Chul Min, 2024. "Non-volatile Fermi level tuning for the control of spin-charge conversion at room temperature," Nature Communications, Nature, vol. 15(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47232-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.