IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-34375-6.html
   My bibliography  Save this article

Giant stress response of terahertz magnons in a spin-orbit Mott insulator

Author

Listed:
  • Hun-Ho Kim

    (Max Planck Institute for Solid State Research)

  • Kentaro Ueda

    (Max Planck Institute for Solid State Research
    The University of Tokyo)

  • Suguru Nakata

    (Max Planck Institute for Solid State Research)

  • Peter Wochner

    (Max Planck Institute for Solid State Research)

  • Andrew Mackenzie

    (Max Planck Institute for Chemical Physics of Solids
    University of St. Andrews)

  • Clifford Hicks

    (Max Planck Institute for Chemical Physics of Solids
    University of Birmingham)

  • Giniyat Khaliullin

    (Max Planck Institute for Solid State Research)

  • Huimei Liu

    (Max Planck Institute for Solid State Research
    Leibniz Institute for Solid State and Materials Research Dresden IFW)

  • Bernhard Keimer

    (Max Planck Institute for Solid State Research)

  • Matteo Minola

    (Max Planck Institute for Solid State Research)

Abstract

Magnonic devices operating at terahertz frequencies offer intriguing prospects for high-speed electronics with minimal energy dissipation However, guiding and manipulating terahertz magnons via external parameters present formidable challenges. Here we report the results of magnetic Raman scattering experiments on the antiferromagnetic spin-orbit Mott insulator Sr2IrO4 under uniaxial stress. We find that the energies of zone-center magnons are extremely stress sensitive: lattice strain of 0.1% increases the magnon energy by 40%. The magnon response is symmetric with respect to the sign of the applied stress (tensile or compressive), but depends strongly on its direction in the IrO2 planes. A theory based on coupling of the spin-orbit-entangled iridium magnetic moments to lattice distortions provides a quantitative explanation of the Raman data and a comprehensive framework for the description of magnon-lattice interactions in magnets with strong spin-orbit coupling. The possibility to efficiently manipulate the propagation of terahertz magnons via external stress opens up multifold design options for reconfigurable magnonic devices.

Suggested Citation

  • Hun-Ho Kim & Kentaro Ueda & Suguru Nakata & Peter Wochner & Andrew Mackenzie & Clifford Hicks & Giniyat Khaliullin & Huimei Liu & Bernhard Keimer & Matteo Minola, 2022. "Giant stress response of terahertz magnons in a spin-orbit Mott insulator," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34375-6
    DOI: 10.1038/s41467-022-34375-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-34375-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-34375-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Y. Nii & T. Nakajima & A. Kikkawa & Y. Yamasaki & K. Ohishi & J. Suzuki & Y. Taguchi & T. Arima & Y. Tokura & Y. Iwasa, 2015. "Uniaxial stress control of skyrmion phase," Nature Communications, Nature, vol. 6(1), pages 1-7, December.
    2. A. Haykal & J. Fischer & W. Akhtar & J.-Y. Chauleau & D. Sando & A. Finco & F. Godel & Y. A. Birkhölzer & C. Carrétéro & N. Jaouen & M. Bibes & M. Viret & S. Fusil & V. Jacques & V. Garcia, 2020. "Antiferromagnetic textures in BiFeO3 controlled by strain and electric field," Nature Communications, Nature, vol. 11(1), pages 1-7, December.
    3. Haowen Wang & Chengliang Lu & Jun Chen & Yong Liu & S. L. Yuan & Sang-Wook Cheong & Shuai Dong & Jun-Ming Liu, 2019. "Giant anisotropic magnetoresistance and nonvolatile memory in canted antiferromagnet Sr2IrO4," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yahong Chai & Yuhan Liang & Cancheng Xiao & Yue Wang & Bo Li & Dingsong Jiang & Pratap Pal & Yongjian Tang & Hetian Chen & Yuejie Zhang & Hao Bai & Teng Xu & Wanjun Jiang & Witold Skowroński & Qinghua, 2024. "Voltage control of multiferroic magnon torque for reconfigurable logic-in-memory," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Shuai Xu & Jiesu Wang & Pan Chen & Kuijuan Jin & Cheng Ma & Shiyao Wu & Erjia Guo & Chen Ge & Can Wang & Xiulai Xu & Hongbao Yao & Jingyi Wang & Donggang Xie & Xinyan Wang & Kai Chang & Xuedong Bai & , 2023. "Magnetoelectric coupling in multiferroics probed by optical second harmonic generation," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    3. Diogo C. Vaz & Chia-Ching Lin & John J. Plombon & Won Young Choi & Inge Groen & Isabel C. Arango & Andrey Chuvilin & Luis E. Hueso & Dmitri E. Nikonov & Hai Li & Punyashloka Debashis & Scott B. Clende, 2024. "Voltage-based magnetization switching and reading in magnetoelectric spin-orbit nanodevices," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Peter Meisenheimer & Guy Moore & Shiyu Zhou & Hongrui Zhang & Xiaoxi Huang & Sajid Husain & Xianzhe Chen & Lane W. Martin & Kristin A. Persson & Sinéad Griffin & Lucas Caretta & Paul Stevenson & Ramam, 2024. "Switching the spin cycloid in BiFeO3 with an electric field," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    5. Dongsheng Yang & Taeheon Kim & Kyusup Lee & Chang Xu & Yakun Liu & Fei Wang & Shishun Zhao & Dushyant Kumar & Hyunsoo Yang, 2024. "Spin-orbit torque manipulation of sub-terahertz magnons in antiferromagnetic α-Fe2O3," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    6. Qiwu Shi & Eric Parsonnet & Xiaoxing Cheng & Natalya Fedorova & Ren-Ci Peng & Abel Fernandez & Alexander Qualls & Xiaoxi Huang & Xue Chang & Hongrui Zhang & David Pesquera & Sujit Das & Dmitri Nikonov, 2022. "The role of lattice dynamics in ferroelectric switching," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34375-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.