IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-46078-1.html
   My bibliography  Save this article

Mesoscopic fluctuations in entanglement dynamics

Author

Listed:
  • Lih-King Lim

    (Zhejiang University)

  • Cunzhong Lou

    (Zhejiang University)

  • Chushun Tian

    (Chinese Academy of Sciences)

Abstract

Understanding fluctuation phenomena plays a dominant role in the development of many-body physics. The time evolution of entanglement is essential to a broad range of subjects in many-body physics, ranging from exotic quantum matter to quantum thermalization. Stemming from various dynamical processes of information, fluctuations in entanglement evolution differ conceptually from out-of-equilibrium fluctuations of traditional physical quantities. Their studies remain elusive. Here we uncover an emergent random structure in the evolution of the many-body wavefunction in two classes of integrable—either interacting or noninteracting—lattice models. It gives rise to out-of-equilibrium entanglement fluctuations which fall into the paradigm of mesoscopic fluctuations of wave interference origin. Specifically, the entanglement entropy variance obeys a universal scaling law in each class, and the full distribution displays a sub-Gaussian upper and a sub-Gamma lower tail. These statistics are independent of both the system’s microscopic details and the choice of entanglement probes, and broaden the class of mesoscopic universalities. They have practical implications for controlling entanglement in mesoscopic devices.

Suggested Citation

  • Lih-King Lim & Cunzhong Lou & Chushun Tian, 2024. "Mesoscopic fluctuations in entanglement dynamics," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46078-1
    DOI: 10.1038/s41467-024-46078-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-46078-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-46078-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Marcos Rigol & Vanja Dunjko & Maxim Olshanii, 2008. "Thermalization and its mechanism for generic isolated quantum systems," Nature, Nature, vol. 452(7189), pages 854-858, April.
    2. Joonhee Choi & Adam L. Shaw & Ivaylo S. Madjarov & Xin Xie & Ran Finkelstein & Jacob P. Covey & Jordan S. Cotler & Daniel K. Mark & Hsin-Yuan Huang & Anant Kale & Hannes Pichler & Fernando G. S. L. Br, 2023. "Preparing random states and benchmarking with many-body quantum chaos," Nature, Nature, vol. 613(7944), pages 468-473, January.
    3. Yuya O. Nakagawa & Masataka Watanabe & Hiroyuki Fujita & Sho Sugiura, 2018. "Universality in volume-law entanglement of scrambled pure quantum states," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stefan Birnkammer & Alvise Bastianello & Michael Knap, 2022. "Prethermalization in one-dimensional quantum many-body systems with confinement," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Durga Bhaktavatsala Rao Dasari & Sen Yang & Arnab Chakrabarti & Amit Finkler & Gershon Kurizki & Jörg Wrachtrup, 2022. "Anti-Zeno purification of spin baths by quantum probe measurements," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Lennart Dabelow & Peter Reimann, 2024. "Stalled response near thermal equilibrium in periodically driven systems," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Filiberto Ares & Sara Murciano & Pasquale Calabrese, 2023. "Entanglement asymmetry as a probe of symmetry breaking," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    5. F. H. B. Somhorst & R. Meer & M. Correa Anguita & R. Schadow & H. J. Snijders & M. Goede & B. Kassenberg & P. Venderbosch & C. Taballione & J. P. Epping & H. H. Vlekkert & J. Timmerhuis & J. F. F. Bul, 2023. "Quantum simulation of thermodynamics in an integrated quantum photonic processor," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    6. Lozano-Negro, Fabricio S. & Zangara, Pablo R. & Pastawski, Horacio M., 2021. "Ergodicity breaking in an incommensurate system observed by OTOCs and loschmidt echoes: From quantum diffusion to sub-diffusion," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    7. Yen-Jui Chang & Wei-Ting Wang & Hao-Yuan Chen & Shih-Wei Liao & Ching-Ray Chang, 2023. "A novel approach for quantum financial simulation and quantum state preparation," Papers 2308.01844, arXiv.org, revised Apr 2024.
    8. Garrahan, Juan P., 2018. "Aspects of non-equilibrium in classical and quantum systems: Slow relaxation and glasses, dynamical large deviations, quantum non-ergodicity, and open quantum dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 504(C), pages 130-154.
    9. Matsuyama, Kazue, 2021. "Loss of ergodicity in a quantum hopping model of a dense many body system with repulsive interactions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 584(C).
    10. Amos Chan & Saumya Shivam & David A. Huse & Andrea De Luca, 2022. "Many-body quantum chaos and space-time translational invariance," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    11. Henrik Wilming & Tobias J. Osborne & Kevin S. C. Decker & Christoph Karrasch, 2023. "Reviving product states in the disordered Heisenberg chain," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    12. Yen-Jui Chang & Wei-Ting Wang & Hao-Yuan Chen & Shih-Wei Liao & Ching-Ray Chang, 2023. "Preparing random state for quantum financing with quantum walks," Papers 2302.12500, arXiv.org, revised Mar 2023.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46078-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.