IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-37747-8.html
   My bibliography  Save this article

Entanglement asymmetry as a probe of symmetry breaking

Author

Listed:
  • Filiberto Ares

    (SISSA and INFN)

  • Sara Murciano

    (SISSA and INFN
    California Institute of Technology
    California Institute of Technology)

  • Pasquale Calabrese

    (SISSA and INFN
    The Abdus Salam International Center for Theoretical Physics)

Abstract

Symmetry and symmetry breaking are two pillars of modern quantum physics. Still, quantifying how much a symmetry is broken is an issue that has received little attention. In extended quantum systems, this problem is intrinsically bound to the subsystem of interest. Hence, in this work, we borrow methods from the theory of entanglement in many-body quantum systems to introduce a subsystem measure of symmetry breaking that we dub entanglement asymmetry. As a prototypical illustration, we study the entanglement asymmetry in a quantum quench of a spin chain in which an initially broken global U(1) symmetry is restored dynamically. We adapt the quasiparticle picture for entanglement evolution to the analytic determination of the entanglement asymmetry. We find, expectedly, that larger is the subsystem, slower is the restoration, but also the counterintuitive result that more the symmetry is initially broken, faster it is restored, a sort of quantum Mpemba effect, a phenomenon that we show to occur in a large variety of systems.

Suggested Citation

  • Filiberto Ares & Sara Murciano & Pasquale Calabrese, 2023. "Entanglement asymmetry as a probe of symmetry breaking," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37747-8
    DOI: 10.1038/s41467-023-37747-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-37747-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-37747-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Marcos Rigol & Vanja Dunjko & Maxim Olshanii, 2008. "Thermalization and its mechanism for generic isolated quantum systems," Nature, Nature, vol. 452(7189), pages 854-858, April.
    2. Avinash Kumar & John Bechhoefer, 2020. "Exponentially faster cooling in a colloidal system," Nature, Nature, vol. 584(7819), pages 64-68, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stefan Birnkammer & Alvise Bastianello & Michael Knap, 2022. "Prethermalization in one-dimensional quantum many-body systems with confinement," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Durga Bhaktavatsala Rao Dasari & Sen Yang & Arnab Chakrabarti & Amit Finkler & Gershon Kurizki & Jörg Wrachtrup, 2022. "Anti-Zeno purification of spin baths by quantum probe measurements," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Takato Yoshimura & Lucas Sá, 2024. "Robustness of quantum chaos and anomalous relaxation in open quantum circuits," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Pengfei Zhang & Yu Gao & Xiansong Xu & Ning Wang & Hang Dong & Chu Guo & Jinfeng Deng & Xu Zhang & Jiachen Chen & Shibo Xu & Ke Wang & Yaozu Wu & Chuanyu Zhang & Feitong Jin & Xuhao Zhu & Aosai Zhang , 2024. "Emergence of steady quantum transport in a superconducting processor," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    5. Shayan Majidy, 2024. "Noncommuting charges can remove non-stationary quantum many-body dynamics," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    6. Lennart Dabelow & Peter Reimann, 2024. "Stalled response near thermal equilibrium in periodically driven systems," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    7. F. H. B. Somhorst & R. Meer & M. Correa Anguita & R. Schadow & H. J. Snijders & M. Goede & B. Kassenberg & P. Venderbosch & C. Taballione & J. P. Epping & H. H. Vlekkert & J. Timmerhuis & J. F. F. Bul, 2023. "Quantum simulation of thermodynamics in an integrated quantum photonic processor," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    8. Lozano-Negro, Fabricio S. & Zangara, Pablo R. & Pastawski, Horacio M., 2021. "Ergodicity breaking in an incommensurate system observed by OTOCs and loschmidt echoes: From quantum diffusion to sub-diffusion," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    9. Liang Xiang & Jiachen Chen & Zitian Zhu & Zixuan Song & Zehang Bao & Xuhao Zhu & Feitong Jin & Ke Wang & Shibo Xu & Yiren Zou & Hekang Li & Zhen Wang & Chao Song & Alexander Yue & Justine Partridge & , 2024. "Enhanced quantum state transfer by circumventing quantum chaotic behavior," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    10. Garrahan, Juan P., 2018. "Aspects of non-equilibrium in classical and quantum systems: Slow relaxation and glasses, dynamical large deviations, quantum non-ergodicity, and open quantum dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 504(C), pages 130-154.
    11. Shraddha Sharma & Tanay Nag & Atanu Rajak & Souvik Bandyopadhyay & Sourav Bhattacharjee & Somnath Maity & Utso Bhattacharya, 2024. "Unquenched—a memoir on non-equilibrium dynamics of quantum many-body systems: honoring Amit Dutta," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 97(7), pages 1-16, July.
    12. Sourav Bhattacharjee & Souvik Bandyopadhyay & Anatoli Polkovnikov, 2024. "Sharp detection of the onset of Floquet heating using eigenstate sensitivity," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 97(10), pages 1-15, October.
    13. Matsuyama, Kazue, 2021. "Loss of ergodicity in a quantum hopping model of a dense many body system with repulsive interactions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 584(C).
    14. Lih-King Lim & Cunzhong Lou & Chushun Tian, 2024. "Mesoscopic fluctuations in entanglement dynamics," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    15. Amos Chan & Saumya Shivam & David A. Huse & Andrea De Luca, 2022. "Many-body quantum chaos and space-time translational invariance," Nature Communications, Nature, vol. 13(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37747-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.