IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-35301-6.html
   My bibliography  Save this article

Prethermalization in one-dimensional quantum many-body systems with confinement

Author

Listed:
  • Stefan Birnkammer

    (Technical University of Munich
    Munich Center for Quantum Science and Technology (MCQST))

  • Alvise Bastianello

    (Technical University of Munich
    Munich Center for Quantum Science and Technology (MCQST))

  • Michael Knap

    (Technical University of Munich
    Munich Center for Quantum Science and Technology (MCQST))

Abstract

Unconventional nonequilibrium phases with restricted correlation spreading and slow entanglement growth have been proposed to emerge in systems with confined excitations, calling their thermalization dynamics into question. Here, we show that in confined systems the thermalization dynamics after a quantum quench instead exhibits multiple stages with well separated time scales. As an example, we consider the confined Ising spin chain, in which domain walls in the ordered phase form bound states reminiscent of mesons. The system first relaxes towards a prethermal state, described by a Gibbs ensemble with conserved meson number. The prethermal state arises from rare events in which mesons are created in close vicinity, leading to an avalanche of scattering events. Only at much later times a true thermal equilibrium is achieved in which the meson number conservation is violated by a mechanism akin to the Schwinger effect. The discussed prethermalization dynamics is directly relevant to generic one-dimensional, many-body systems with confined excitations.

Suggested Citation

  • Stefan Birnkammer & Alvise Bastianello & Michael Knap, 2022. "Prethermalization in one-dimensional quantum many-body systems with confinement," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35301-6
    DOI: 10.1038/s41467-022-35301-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-35301-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-35301-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Marcos Rigol & Vanja Dunjko & Maxim Olshanii, 2008. "Thermalization and its mechanism for generic isolated quantum systems," Nature, Nature, vol. 452(7189), pages 854-858, April.
    2. Esteban A. Martinez & Christine A. Muschik & Philipp Schindler & Daniel Nigg & Alexander Erhard & Markus Heyl & Philipp Hauke & Marcello Dalmonte & Thomas Monz & Peter Zoller & Rainer Blatt, 2016. "Real-time dynamics of lattice gauge theories with a few-qubit quantum computer," Nature, Nature, vol. 534(7608), pages 516-519, June.
    3. Bing Yang & Hui Sun & Robert Ott & Han-Yi Wang & Torsten V. Zache & Jad C. Halimeh & Zhen-Sheng Yuan & Philipp Hauke & Jian-Wei Pan, 2020. "Observation of gauge invariance in a 71-site Bose–Hubbard quantum simulator," Nature, Nature, vol. 587(7834), pages 392-396, November.
    4. Hannes Bernien & Sylvain Schwartz & Alexander Keesling & Harry Levine & Ahmed Omran & Hannes Pichler & Soonwon Choi & Alexander S. Zibrov & Manuel Endres & Markus Greiner & Vladan Vuletić & Mikhail D., 2017. "Probing many-body dynamics on a 51-atom quantum simulator," Nature, Nature, vol. 551(7682), pages 579-584, November.
    5. Jonathan Simon & Waseem S. Bakr & Ruichao Ma & M. Eric Tai & Philipp M. Preiss & Markus Greiner, 2011. "Quantum simulation of antiferromagnetic spin chains in an optical lattice," Nature, Nature, vol. 472(7343), pages 307-312, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yasar Y. Atas & Jinglei Zhang & Randy Lewis & Amin Jahanpour & Jan F. Haase & Christine A. Muschik, 2021. "SU(2) hadrons on a quantum computer via a variational approach," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    2. Benedikt Fauseweh, 2024. "Quantum many-body simulations on digital quantum computers: State-of-the-art and future challenges," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Yukalov, V.I. & Yukalova, E.P. & Sornette, D., 2022. "Role of collective information in networks of quantum operating agents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).
    4. Jin Ming Koh & Tommy Tai & Ching Hua Lee, 2024. "Realization of higher-order topological lattices on a quantum computer," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    5. Ritabrata Dutta & Antonietta Mira, 2018. "Approximate Bayesian Computation for Biological Science," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 7(3), pages 54-55, July.
    6. Durga Bhaktavatsala Rao Dasari & Sen Yang & Arnab Chakrabarti & Amit Finkler & Gershon Kurizki & Jörg Wrachtrup, 2022. "Anti-Zeno purification of spin baths by quantum probe measurements," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    7. Shayan Majidy, 2024. "Noncommuting charges can remove non-stationary quantum many-body dynamics," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    8. Lennart Dabelow & Peter Reimann, 2024. "Stalled response near thermal equilibrium in periodically driven systems," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    9. Filiberto Ares & Sara Murciano & Pasquale Calabrese, 2023. "Entanglement asymmetry as a probe of symmetry breaking," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    10. F. H. B. Somhorst & R. Meer & M. Correa Anguita & R. Schadow & H. J. Snijders & M. Goede & B. Kassenberg & P. Venderbosch & C. Taballione & J. P. Epping & H. H. Vlekkert & J. Timmerhuis & J. F. F. Bul, 2023. "Quantum simulation of thermodynamics in an integrated quantum photonic processor," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    11. Matthew J. O’Rourke & Garnet Kin-Lic Chan, 2023. "Entanglement in the quantum phases of an unfrustrated Rydberg atom array," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    12. Stuart J. Masson & Ana Asenjo-Garcia, 2022. "Universality of Dicke superradiance in arrays of quantum emitters," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    13. Lozano-Negro, Fabricio S. & Zangara, Pablo R. & Pastawski, Horacio M., 2021. "Ergodicity breaking in an incommensurate system observed by OTOCs and loschmidt echoes: From quantum diffusion to sub-diffusion," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    14. Andrea Carli & Christopher Parsonage & Arthur Rooij & Lennart Koehn & Clemens Ulm & Callum W. Duncan & Andrew J. Daley & Elmar Haller & Stefan Kuhr, 2024. "Commensurate and incommensurate 1D interacting quantum systems," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    15. Shuangzan Lu & Deping Guo & Zhengbo Cheng & Yanping Guo & Cong Wang & Jinghao Deng & Yusong Bai & Cheng Tian & Linwei Zhou & Youguo Shi & Jun He & Wei Ji & Chendong Zhang, 2023. "Controllable dimensionality conversion between 1D and 2D CrCl3 magnetic nanostructures," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    16. Liang Xiang & Jiachen Chen & Zitian Zhu & Zixuan Song & Zehang Bao & Xuhao Zhu & Feitong Jin & Ke Wang & Shibo Xu & Yiren Zou & Hekang Li & Zhen Wang & Chao Song & Alexander Yue & Justine Partridge & , 2024. "Enhanced quantum state transfer by circumventing quantum chaotic behavior," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    17. Zehang Bao & Shibo Xu & Zixuan Song & Ke Wang & Liang Xiang & Zitian Zhu & Jiachen Chen & Feitong Jin & Xuhao Zhu & Yu Gao & Yaozu Wu & Chuanyu Zhang & Ning Wang & Yiren Zou & Ziqi Tan & Aosai Zhang &, 2024. "Creating and controlling global Greenberger-Horne-Zeilinger entanglement on quantum processors," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    18. Garrahan, Juan P., 2018. "Aspects of non-equilibrium in classical and quantum systems: Slow relaxation and glasses, dynamical large deviations, quantum non-ergodicity, and open quantum dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 504(C), pages 130-154.
    19. Matsuyama, Kazue, 2021. "Loss of ergodicity in a quantum hopping model of a dense many body system with repulsive interactions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 584(C).
    20. Giacomo Torlai & Christopher J. Wood & Atithi Acharya & Giuseppe Carleo & Juan Carrasquilla & Leandro Aolita, 2023. "Quantum process tomography with unsupervised learning and tensor networks," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35301-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.