A novel approach for quantum financial simulation and quantum state preparation
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Ahmed, Bouteska, 2020. "Understanding the impact of investor sentiment on the price formation process: A review of the conduct of American stock markets," The Journal of Economic Asymmetries, Elsevier, vol. 22(C).
- Shouvanik Chakrabarti & Rajiv Krishnakumar & Guglielmo Mazzola & Nikitas Stamatopoulos & Stefan Woerner & William J. Zeng, 2020. "A Threshold for Quantum Advantage in Derivative Pricing," Papers 2012.03819, arXiv.org, revised May 2021.
- Joonhee Choi & Adam L. Shaw & Ivaylo S. Madjarov & Xin Xie & Ran Finkelstein & Jacob P. Covey & Jordan S. Cotler & Daniel K. Mark & Hsin-Yuan Huang & Anant Kale & Hannes Pichler & Fernando G. S. L. Br, 2023. "Preparing random states and benchmarking with many-body quantum chaos," Nature, Nature, vol. 613(7944), pages 468-473, January.
- Dylan Herman & Cody Googin & Xiaoyuan Liu & Alexey Galda & Ilya Safro & Yue Sun & Marco Pistoia & Yuri Alexeev, 2022. "A Survey of Quantum Computing for Finance," Papers 2201.02773, arXiv.org, revised Jun 2022.
- Nikitas Stamatopoulos & Guglielmo Mazzola & Stefan Woerner & William J. Zeng, 2021. "Towards Quantum Advantage in Financial Market Risk using Quantum Gradient Algorithms," Papers 2111.12509, arXiv.org, revised Jul 2022.
- Vojtěch Havlíček & Antonio D. Córcoles & Kristan Temme & Aram W. Harrow & Abhinav Kandala & Jerry M. Chow & Jay M. Gambetta, 2019. "Supervised learning with quantum-enhanced feature spaces," Nature, Nature, vol. 567(7747), pages 209-212, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yen-Jui Chang & Wei-Ting Wang & Hao-Yuan Chen & Shih-Wei Liao & Ching-Ray Chang, 2023. "Preparing random state for quantum financing with quantum walks," Papers 2302.12500, arXiv.org, revised Mar 2023.
- Abha Naik & Esra Yeniaras & Gerhard Hellstern & Grishma Prasad & Sanjay Kumar Lalta Prasad Vishwakarma, 2023. "From Portfolio Optimization to Quantum Blockchain and Security: A Systematic Review of Quantum Computing in Finance," Papers 2307.01155, arXiv.org.
- Dylan Herman & Cody Googin & Xiaoyuan Liu & Alexey Galda & Ilya Safro & Yue Sun & Marco Pistoia & Yuri Alexeev, 2022. "A Survey of Quantum Computing for Finance," Papers 2201.02773, arXiv.org, revised Jun 2022.
- Siyi Liu & Xin Liu & Chuancai Zhang & Lingli Zhang, 2023. "Institutional and individual investors' short‐term reactions to the COVID‐19 crisis in China," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 63(4), pages 4333-4355, December.
- Koichi Miyamoto & Kenji Kubo, 2021. "Pricing multi-asset derivatives by finite difference method on a quantum computer," Papers 2109.12896, arXiv.org.
- Gric, Zuzana & Bajzík, Josef & Badura, Ondřej, 2023. "Does sentiment affect stock returns? A meta-analysis across survey-based measures," International Review of Financial Analysis, Elsevier, vol. 89(C).
- Mark-Oliver Wolf & Tom Ewen & Ivica Turkalj, 2023. "Quantum Architecture Search for Quantum Monte Carlo Integration via Conditional Parameterized Circuits with Application to Finance," Papers 2304.08793, arXiv.org, revised Sep 2023.
- Roman Rietsche & Christian Dremel & Samuel Bosch & Léa Steinacker & Miriam Meckel & Jan-Marco Leimeister, 2022. "Quantum computing," Electronic Markets, Springer;IIM University of St. Gallen, vol. 32(4), pages 2525-2536, December.
- Vicente Moret-Bonillo & Samuel Magaz-Romero & Eduardo Mosqueira-Rey, 2022. "Quantum Computing for Dealing with Inaccurate Knowledge Related to the Certainty Factors Model," Mathematics, MDPI, vol. 10(2), pages 1-21, January.
- Bikram Khanal & Pablo Rivas, 2024. "A Modified Depolarization Approach for Efficient Quantum Machine Learning," Mathematics, MDPI, vol. 12(9), pages 1-17, May.
- Kamila Zaman & Alberto Marchisio & Muhammad Kashif & Muhammad Shafique, 2024. "PO-QA: A Framework for Portfolio Optimization using Quantum Algorithms," Papers 2407.19857, arXiv.org.
- Zribi, Wissal & Boufateh, Talel & Lahouel, Bechir Ben & Urom, Christian, 2024. "Uncertainty shocks, investor sentiment and environmental performance: Novel evidence from a PVAR approach," International Review of Financial Analysis, Elsevier, vol. 93(C).
- Fangjun Hu & Saeed A. Khan & Nicholas T. Bronn & Gerasimos Angelatos & Graham E. Rowlands & Guilhem J. Ribeill & Hakan E. Türeci, 2024. "Overcoming the coherence time barrier in quantum machine learning on temporal data," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
- Rana Muhammad Adnan & Abolfazl Jaafari & Aadhityaa Mohanavelu & Ozgur Kisi & Ahmed Elbeltagi, 2021. "Novel Ensemble Forecasting of Streamflow Using Locally Weighted Learning Algorithm," Sustainability, MDPI, vol. 13(11), pages 1-19, May.
- Jianjun Chen & Yongming Li & Ariel Neufeld, 2023. "Quantum Monte Carlo algorithm for solving Black-Scholes PDEs for high-dimensional option pricing in finance and its complexity analysis," Papers 2301.09241, arXiv.org, revised Apr 2024.
- Loureiro, Maria L. & Alló, Maria, 2024. "Feeling the heat? Analyzing climate change sentiment in Spain using Twitter data," Resource and Energy Economics, Elsevier, vol. 77(C).
- Francesca Cibrario & Or Samimi Golan & Giacomo Ranieri & Emanuele Dri & Mattia Ippoliti & Ron Cohen & Christian Mattia & Bartolomeo Montrucchio & Amir Naveh & Davide Corbelletto, 2024. "Quantum Amplitude Loading for Rainbow Options Pricing," Papers 2402.05574, arXiv.org, revised Oct 2024.
- Jinge Bao & Patrick Rebentrost, 2022. "Fundamental theorem for quantum asset pricing," Papers 2212.13815, arXiv.org, revised Apr 2023.
- Taylor, Richard D., 2020. "Quantum Artificial Intelligence: A “precautionary” U.S. approach?," Telecommunications Policy, Elsevier, vol. 44(6).
- Olawale Ayoade & Pablo Rivas & Javier Orduz, 2022. "Artificial Intelligence Computing at the Quantum Level," Data, MDPI, vol. 7(3), pages 1-16, February.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-CMP-2023-09-11 (Computational Economics)
- NEP-HME-2023-09-11 (Heterodox Microeconomics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2308.01844. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.