IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v150y2021ics0960077921005294.html
   My bibliography  Save this article

Ergodicity breaking in an incommensurate system observed by OTOCs and loschmidt echoes: From quantum diffusion to sub-diffusion

Author

Listed:
  • Lozano-Negro, Fabricio S.
  • Zangara, Pablo R.
  • Pastawski, Horacio M.

Abstract

The metal-insulator transition (MIT), which includes Anderson localization and Mott insulators as extreme regimes, has received renewed interest as the many-body effects often constitute a limitation for the handling of quantum interference. This resulted in the field dubbed many-body localization (MBL), intensively studied theoretically and experimentally as understanding the appearance of equilibration and thermalization becomes relevant in dealing with finite systems. Here, we propose a new observable to study this transition in a spin chain under the “disorder” of a Harper-Hofstadter-Aubry-André on-site potential. This quantity, which we call zeroth-order gradient entanglement (ZOGE) is extracted from the fundamental Fourier mode of a family of out-of-time-ordered correlators (OTOCs). These are just Loschmidt Echoes, where a field gradient is applied before the time reversal. In the absence of many-body interactions, the ZOGE coincides with the inverse participation ratio of a Fermionic wave function. By adding an Ising interaction to an XY Hamiltonian, one can explore the MBL phase diagram of the system. Close to the critical region, the excitation dynamics is consistent with a diffusion law. However, for weak disorder, quantum diffusion prevails while for strong disorder the excitation dynamics is sub-diffusive.

Suggested Citation

  • Lozano-Negro, Fabricio S. & Zangara, Pablo R. & Pastawski, Horacio M., 2021. "Ergodicity breaking in an incommensurate system observed by OTOCs and loschmidt echoes: From quantum diffusion to sub-diffusion," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
  • Handle: RePEc:eee:chsofr:v:150:y:2021:i:c:s0960077921005294
    DOI: 10.1016/j.chaos.2021.111175
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077921005294
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.111175?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marcos Rigol & Vanja Dunjko & Maxim Olshanii, 2008. "Thermalization and its mechanism for generic isolated quantum systems," Nature, Nature, vol. 452(7189), pages 854-858, April.
    2. R. J. Lewis-Swan & A. Safavi-Naini & J. J. Bollinger & A. M. Rey, 2019. "Author Correction: Unifying scrambling, thermalization and entanglement through measurement of fidelity out-of-time-order correlators in the Dicke model," Nature Communications, Nature, vol. 10(1), pages 1-1, December.
    3. R. J. Lewis-Swan & A. Safavi-Naini & J. J. Bollinger & A. M. Rey, 2019. "Unifying scrambling, thermalization and entanglement through measurement of fidelity out-of-time-order correlators in the Dicke model," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    4. Cucchietti, F.M & Pastawski, H.M, 2000. "Anomalous diffusion in quasi-one-dimensional systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 283(1), pages 302-305.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lennart Dabelow & Peter Reimann, 2024. "Stalled response near thermal equilibrium in periodically driven systems," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Filiberto Ares & Sara Murciano & Pasquale Calabrese, 2023. "Entanglement asymmetry as a probe of symmetry breaking," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    3. Liang Xiang & Jiachen Chen & Zitian Zhu & Zixuan Song & Zehang Bao & Xuhao Zhu & Feitong Jin & Ke Wang & Shibo Xu & Yiren Zou & Hekang Li & Zhen Wang & Chao Song & Alexander Yue & Justine Partridge & , 2024. "Enhanced quantum state transfer by circumventing quantum chaotic behavior," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    4. Stefan Birnkammer & Alvise Bastianello & Michael Knap, 2022. "Prethermalization in one-dimensional quantum many-body systems with confinement," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Durga Bhaktavatsala Rao Dasari & Sen Yang & Arnab Chakrabarti & Amit Finkler & Gershon Kurizki & Jörg Wrachtrup, 2022. "Anti-Zeno purification of spin baths by quantum probe measurements," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    6. F. H. B. Somhorst & R. Meer & M. Correa Anguita & R. Schadow & H. J. Snijders & M. Goede & B. Kassenberg & P. Venderbosch & C. Taballione & J. P. Epping & H. H. Vlekkert & J. Timmerhuis & J. F. F. Bul, 2023. "Quantum simulation of thermodynamics in an integrated quantum photonic processor," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    7. Garrahan, Juan P., 2018. "Aspects of non-equilibrium in classical and quantum systems: Slow relaxation and glasses, dynamical large deviations, quantum non-ergodicity, and open quantum dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 504(C), pages 130-154.
    8. Matsuyama, Kazue, 2021. "Loss of ergodicity in a quantum hopping model of a dense many body system with repulsive interactions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 584(C).
    9. Lih-King Lim & Cunzhong Lou & Chushun Tian, 2024. "Mesoscopic fluctuations in entanglement dynamics," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    10. Amos Chan & Saumya Shivam & David A. Huse & Andrea De Luca, 2022. "Many-body quantum chaos and space-time translational invariance," Nature Communications, Nature, vol. 13(1), pages 1-7, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:150:y:2021:i:c:s0960077921005294. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.