IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-38413-9.html
   My bibliography  Save this article

Quantum simulation of thermodynamics in an integrated quantum photonic processor

Author

Listed:
  • F. H. B. Somhorst

    (University of Twente)

  • R. Meer

    (University of Twente)

  • M. Correa Anguita

    (University of Twente)

  • R. Schadow

    (Freie Universität Berlin)

  • H. J. Snijders

    (QuiX Quantum B.V.)

  • M. Goede

    (QuiX Quantum B.V.)

  • B. Kassenberg

    (QuiX Quantum B.V.)

  • P. Venderbosch

    (QuiX Quantum B.V.)

  • C. Taballione

    (QuiX Quantum B.V.)

  • J. P. Epping

    (QuiX Quantum B.V.)

  • H. H. Vlekkert

    (QuiX Quantum B.V.)

  • J. Timmerhuis

    (University of Twente)

  • J. F. F. Bulmer

    (University of Bristol)

  • J. Lugani

    (IIT Delhi)

  • I. A. Walmsley

    (Imperial College London
    University of Oxford)

  • P. W. H. Pinkse

    (University of Twente)

  • J. Eisert

    (Freie Universität Berlin
    Helmholtz-Zentrum Berlin für Materialien und Energie
    Fraunhofer Heinrich Hertz Institute)

  • N. Walk

    (Freie Universität Berlin)

  • J. J. Renema

    (University of Twente
    QuiX Quantum B.V.)

Abstract

One of the core questions of quantum physics is how to reconcile the unitary evolution of quantum states, which is information-preserving and time-reversible, with evolution following the second law of thermodynamics, which, in general, is neither. The resolution to this paradox is to recognize that global unitary evolution of a multi-partite quantum state causes the state of local subsystems to evolve towards maximum-entropy states. In this work, we experimentally demonstrate this effect in linear quantum optics by simultaneously showing the convergence of local quantum states to a generalized Gibbs ensemble constituting a maximum-entropy state under precisely controlled conditions, while introducing an efficient certification method to demonstrate that the state retains global purity. Our quantum states are manipulated by a programmable integrated quantum photonic processor, which simulates arbitrary non-interacting Hamiltonians, demonstrating the universality of this phenomenon. Our results show the potential of photonic devices for quantum simulations involving non-Gaussian states.

Suggested Citation

  • F. H. B. Somhorst & R. Meer & M. Correa Anguita & R. Schadow & H. J. Snijders & M. Goede & B. Kassenberg & P. Venderbosch & C. Taballione & J. P. Epping & H. H. Vlekkert & J. Timmerhuis & J. F. F. Bul, 2023. "Quantum simulation of thermodynamics in an integrated quantum photonic processor," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38413-9
    DOI: 10.1038/s41467-023-38413-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-38413-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-38413-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Marcos Rigol & Vanja Dunjko & Maxim Olshanii, 2008. "Thermalization and its mechanism for generic isolated quantum systems," Nature, Nature, vol. 452(7189), pages 854-858, April.
    2. Nicole Yunger Halpern & Philippe Faist & Jonathan Oppenheim & Andreas Winter, 2016. "Microcanonical and resource-theoretic derivations of the thermal state of a quantum system with noncommuting charges," Nature Communications, Nature, vol. 7(1), pages 1-7, November.
    3. Rajibul Islam & Ruichao Ma & Philipp M. Preiss & M. Eric Tai & Alexander Lukin & Matthew Rispoli & Markus Greiner, 2015. "Measuring entanglement entropy in a quantum many-body system," Nature, Nature, vol. 528(7580), pages 77-83, December.
    4. J. M. Arrazola & V. Bergholm & K. Brádler & T. R. Bromley & M. J. Collins & I. Dhand & A. Fumagalli & T. Gerrits & A. Goussev & L. G. Helt & J. Hundal & T. Isacsson & R. B. Israel & J. Izaac & S. Jaha, 2021. "Quantum circuits with many photons on a programmable nanophotonic chip," Nature, Nature, vol. 591(7848), pages 54-60, March.
    5. Alberto Peruzzo & Jarrod McClean & Peter Shadbolt & Man-Hong Yung & Xiao-Qi Zhou & Peter J. Love & Alán Aspuru-Guzik & Jeremy L. O’Brien, 2014. "A variational eigenvalue solver on a photonic quantum processor," Nature Communications, Nature, vol. 5(1), pages 1-7, September.
    6. Chris Sparrow & Enrique Martín-López & Nicola Maraviglia & Alex Neville & Christopher Harrold & Jacques Carolan & Yogesh N. Joglekar & Toshikazu Hashimoto & Nobuyuki Matsuda & Jeremy L. O’Brien & Davi, 2018. "Simulating the vibrational quantum dynamics of molecules using photonics," Nature, Nature, vol. 557(7707), pages 660-667, May.
    7. Ioannis Pitsios & Leonardo Banchi & Adil S. Rab & Marco Bentivegna & Debora Caprara & Andrea Crespi & Nicolò Spagnolo & Sougato Bose & Paolo Mataloni & Roberto Osellame & Fabio Sciarrino, 2017. "Photonic simulation of entanglement growth and engineering after a spin chain quench," Nature Communications, Nature, vol. 8(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ashish Chanana & Hugo Larocque & Renan Moreira & Jacques Carolan & Biswarup Guha & Emerson G. Melo & Vikas Anant & Jindong Song & Dirk Englund & Daniel J. Blumenthal & Kartik Srinivasan & Marcelo Dava, 2022. "Ultra-low loss quantum photonic circuits integrated with single quantum emitters," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Canella, G.A. & França, V.V., 2020. "Entanglement in disordered superfluids: The impact of density, interaction and harmonic confinement on the Superconductor–Insulator transition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    3. Lennart Dabelow & Peter Reimann, 2024. "Stalled response near thermal equilibrium in periodically driven systems," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Filiberto Ares & Sara Murciano & Pasquale Calabrese, 2023. "Entanglement asymmetry as a probe of symmetry breaking," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    5. Eric R. Anschuetz & Bobak T. Kiani, 2022. "Quantum variational algorithms are swamped with traps," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    6. Pradhan, Ritapriya & Bhattacharjee, Jayanta K., 2024. "Perturbation theory in a microcanonical ensemble," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 634(C).
    7. Sitan Chen & Jordan Cotler & Hsin-Yuan Huang & Jerry Li, 2023. "The complexity of NISQ," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    8. Jauregui, M. & Zunino, L. & Lenzi, E.K. & Mendes, R.S. & Ribeiro, H.V., 2018. "Characterization of time series via Rényi complexity–entropy curves," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 498(C), pages 74-85.
    9. Ajagekar, Akshay & You, Fengqi, 2022. "Quantum computing and quantum artificial intelligence for renewable and sustainable energy: A emerging prospect towards climate neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    10. Daniel J. Egger & Claudio Gambella & Jakub Marecek & Scott McFaddin & Martin Mevissen & Rudy Raymond & Andrea Simonetto & Stefan Woerner & Elena Yndurain, 2020. "Quantum Computing for Finance: State of the Art and Future Prospects," Papers 2006.14510, arXiv.org, revised Jan 2021.
    11. Antoine Jacquier & Oleksiy Kondratyev & Gordon Lee & Mugad Oumgari, 2023. "Quantum Computing for Financial Mathematics," Papers 2311.06621, arXiv.org.
    12. Ke Wan & Yiwen Liu, 2023. "Hybrid Quantum Algorithms integrating QAOA, Penalty Dephasing and Zeno Effect for Solving Binary Optimization Problems with Multiple Constraints," Papers 2305.08056, arXiv.org.
    13. Tong Liu & Shang Liu & Hekang Li & Hao Li & Kaixuan Huang & Zhongcheng Xiang & Xiaohui Song & Kai Xu & Dongning Zheng & Heng Fan, 2023. "Observation of entanglement transition of pseudo-random mixed states," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    14. X. L. He & Yong Lu & D. Q. Bao & Hang Xue & W. B. Jiang & Z. Wang & A. F. Roudsari & Per Delsing & J. S. Tsai & Z. R. Lin, 2023. "Fast generation of Schrödinger cat states using a Kerr-tunable superconducting resonator," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    15. Xinbiao Wang & Yuxuan Du & Zhuozhuo Tu & Yong Luo & Xiao Yuan & Dacheng Tao, 2024. "Transition role of entangled data in quantum machine learning," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    16. Abha Naik & Esra Yeniaras & Gerhard Hellstern & Grishma Prasad & Sanjay Kumar Lalta Prasad Vishwakarma, 2023. "From Portfolio Optimization to Quantum Blockchain and Security: A Systematic Review of Quantum Computing in Finance," Papers 2307.01155, arXiv.org.
    17. Stefan Birnkammer & Alvise Bastianello & Michael Knap, 2022. "Prethermalization in one-dimensional quantum many-body systems with confinement," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    18. Durga Bhaktavatsala Rao Dasari & Sen Yang & Arnab Chakrabarti & Amit Finkler & Gershon Kurizki & Jörg Wrachtrup, 2022. "Anti-Zeno purification of spin baths by quantum probe measurements," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    19. Xuan-Kun Li & Jian-Xu Ma & Xiang-Yu Li & Jun-Jie Hu & Chuan-Yang Ding & Feng-Kai Han & Xiao-Min Guo & Xi Tan & Xian-Min Jin, 2024. "High-efficiency reinforcement learning with hybrid architecture photonic integrated circuit," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    20. Junyu Liu & Minzhao Liu & Jin-Peng Liu & Ziyu Ye & Yunfei Wang & Yuri Alexeev & Jens Eisert & Liang Jiang, 2024. "Towards provably efficient quantum algorithms for large-scale machine-learning models," Nature Communications, Nature, vol. 15(1), pages 1-6, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38413-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.