IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-41803-8.html
   My bibliography  Save this article

Phase information is conserved in sparse, synchronous population-rate-codes via phase-to-rate recoding

Author

Listed:
  • Daniel Müller-Komorowska

    (Okinawa Institute of Science and Technology Graduate University
    University of Bonn)

  • Baris Kuru

    (University of Bonn)

  • Heinz Beck

    (University of Bonn
    Deutsches Zentrum für Neurodegenerative Erkrankungen e.V)

  • Oliver Braganza

    (University of Bonn
    University of Duisburg-Essen)

Abstract

Neural computation is often traced in terms of either rate- or phase-codes. However, most circuit operations will simultaneously affect information across both coding schemes. It remains unclear how phase and rate coded information is transmitted, in the face of continuous modification at consecutive processing stages. Here, we study this question in the entorhinal cortex (EC)- dentate gyrus (DG)- CA3 system using three distinct computational models. We demonstrate that DG feedback inhibition leverages EC phase information to improve rate-coding, a computation we term phase-to-rate recoding. Our results suggest that it i) supports the conservation of phase information within sparse rate-codes and ii) enhances the efficiency of plasticity in downstream CA3 via increased synchrony. Given the ubiquity of both phase-coding and feedback circuits, our results raise the question whether phase-to-rate recoding is a recurring computational motif, which supports the generation of sparse, synchronous population-rate-codes in areas beyond the DG.

Suggested Citation

  • Daniel Müller-Komorowska & Baris Kuru & Heinz Beck & Oliver Braganza, 2023. "Phase information is conserved in sparse, synchronous population-rate-codes via phase-to-rate recoding," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41803-8
    DOI: 10.1038/s41467-023-41803-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-41803-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-41803-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hanne Stensola & Tor Stensola & Trygve Solstad & Kristian Frøland & May-Britt Moser & Edvard I. Moser, 2012. "The entorhinal grid map is discretized," Nature, Nature, vol. 492(7427), pages 72-78, December.
    2. Rajiv K. Mishra & Sooyun Kim & Segundo J. Guzman & Peter Jonas, 2016. "Symmetric spike timing-dependent plasticity at CA3–CA3 synapses optimizes storage and recall in autoassociative networks," Nature Communications, Nature, vol. 7(1), pages 1-11, September.
    3. Leila Reddy & Matthew W. Self & Benedikt Zoefel & Marlène Poncet & Jessy K. Possel & Judith C. Peters & Johannes C. Baayen & Sander Idema & Rufin VanRullen & Pieter R. Roelfsema, 2021. "Theta-phase dependent neuronal coding during sequence learning in human single neurons," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    4. Claudia Espinoza & Segundo Jose Guzman & Xiaomin Zhang & Peter Jonas, 2018. "Parvalbumin+ interneurons obey unique connectivity rules and establish a powerful lateral-inhibition microcircuit in dentate gyrus," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    5. N. Alex Cayco-Gajic & Claudia Clopath & R. Angus Silver, 2017. "Sparse synaptic connectivity is required for decorrelation and pattern separation in feedforward networks," Nature Communications, Nature, vol. 8(1), pages 1-11, December.
    6. Suzanne van der Veldt & Guillaume Etter & Coralie-Anne Mosser & Frédéric Manseau & Sylvain Williams, 2021. "Conjunctive spatial and self-motion codes are topographically organized in the GABAergic cells of the lateral septum," PLOS Biology, Public Library of Science, vol. 19(8), pages 1-36, August.
    7. Charles R. Harris & K. Jarrod Millman & Stéfan J. Walt & Ralf Gommers & Pauli Virtanen & David Cournapeau & Eric Wieser & Julian Taylor & Sebastian Berg & Nathaniel J. Smith & Robert Kern & Matti Picu, 2020. "Array programming with NumPy," Nature, Nature, vol. 585(7825), pages 357-362, September.
    8. Torkel Hafting & Marianne Fyhn & Tora Bonnevie & May-Britt Moser & Edvard I. Moser, 2008. "Hippocampus-independent phase precession in entorhinal grid cells," Nature, Nature, vol. 453(7199), pages 1248-1252, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Louis Kang & Taro Toyoizumi, 2024. "Distinguishing examples while building concepts in hippocampal and artificial networks," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    2. Tiziano D’Albis & Richard Kempter, 2017. "A single-cell spiking model for the origin of grid-cell patterns," PLOS Computational Biology, Public Library of Science, vol. 13(10), pages 1-41, October.
    3. Miles Wischnewski & Harry Tran & Zhihe Zhao & Sina Shirinpour & Zachary J. Haigh & Jonna Rotteveel & Nipun D. Perera & Ivan Alekseichuk & Jan Zimmermann & Alexander Opitz, 2024. "Induced neural phase precession through exogenous electric fields," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    4. Tan Wang & L. Jeff Hong, 2023. "Large-Scale Inventory Optimization: A Recurrent Neural Networks–Inspired Simulation Approach," INFORMS Journal on Computing, INFORMS, vol. 35(1), pages 196-215, January.
    5. Geeraert, Joke & Rocha, Luis E.C. & Vandeviver, Christophe, 2024. "The impact of violent behavior on co-offender selection: Evidence of behavioral homophily," Journal of Criminal Justice, Elsevier, vol. 94(C).
    6. Léon Faure & Bastien Mollet & Wolfram Liebermeister & Jean-Loup Faulon, 2023. "A neural-mechanistic hybrid approach improving the predictive power of genome-scale metabolic models," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    7. Claudia Quinteros-Cartaya & Guillermo Solorio-Magaña & Francisco Javier Núñez-Cornú & Felipe de Jesús Escalona-Alcázar & Diana Núñez, 2023. "Microearthquakes in the Guadalajara Metropolitan Zone, Mexico: evidence from buried active faults in Tesistán Valley, Zapopan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 2797-2818, April.
    8. Furqan Dar & Samuel R. Cohen & Diana M. Mitrea & Aaron H. Phillips & Gergely Nagy & Wellington C. Leite & Christopher B. Stanley & Jeong-Mo Choi & Richard W. Kriwacki & Rohit V. Pappu, 2024. "Biomolecular condensates form spatially inhomogeneous network fluids," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    9. Nina Tiel & Fabian Fopp & Philipp Brun & Johan Hoogen & Dirk Nikolaus Karger & Cecilia M. Casadei & Lisha Lyu & Devis Tuia & Niklaus E. Zimmermann & Thomas W. Crowther & Loïc Pellissier, 2024. "Regional uniqueness of tree species composition and response to forest loss and climate change," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    10. López Pérez, Mario & Mansilla Corona, Ricardo, 2022. "Ordinal synchronization and typical states in high-frequency digital markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).
    11. Jessica M. Vanslambrouck & Sean B. Wilson & Ker Sin Tan & Ella Groenewegen & Rajeev Rudraraju & Jessica Neil & Kynan T. Lawlor & Sophia Mah & Michelle Scurr & Sara E. Howden & Kanta Subbarao & Melissa, 2022. "Enhanced metanephric specification to functional proximal tubule enables toxicity screening and infectious disease modelling in kidney organoids," Nature Communications, Nature, vol. 13(1), pages 1-23, December.
    12. Kiran Krishnamachari & Dylan Lu & Alexander Swift-Scott & Anuar Yeraliyev & Kayla Lee & Weitai Huang & Sim Ngak Leng & Anders Jacobsen Skanderup, 2022. "Accurate somatic variant detection using weakly supervised deep learning," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    13. Larissa Samaan & Leonie Klock & Sandra Weber & Mirjam Reidick & Leonie Ascone & Simone Kühn, 2024. "Low-Level Visual Features of Window Views Contribute to Perceived Naturalness and Mental Health Outcomes," IJERPH, MDPI, vol. 21(5), pages 1-35, May.
    14. Dennis Bontempi & Leonard Nuernberg & Suraj Pai & Deepa Krishnaswamy & Vamsi Thiriveedhi & Ahmed Hosny & Raymond H. Mak & Keyvan Farahani & Ron Kikinis & Andrey Fedorov & Hugo J. W. L. Aerts, 2024. "End-to-end reproducible AI pipelines in radiology using the cloud," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    15. Lauren L. Porter & Allen K. Kim & Swechha Rimal & Loren L. Looger & Ananya Majumdar & Brett D. Mensh & Mary R. Starich & Marie-Paule Strub, 2022. "Many dissimilar NusG protein domains switch between α-helix and β-sheet folds," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    16. Oren Amsalem & Hidehiko Inagaki & Jianing Yu & Karel Svoboda & Ran Darshan, 2024. "Sub-threshold neuronal activity and the dynamical regime of cerebral cortex," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    17. Matthew Rosenblatt & Link Tejavibulya & Rongtao Jiang & Stephanie Noble & Dustin Scheinost, 2024. "Data leakage inflates prediction performance in connectome-based machine learning models," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    18. Jackie Grant & Mark Hindmarsh & Sergey E. Koposov, 2022. "The distribution of loss to future USS pensions due to the UUK cuts of April 2022," Papers 2206.06201, arXiv.org.
    19. Taylor J. Malone & Nai-Wen Tien & Yan Ma & Lian Cui & Shangru Lyu & Garret Wang & Duc Nguyen & Kai Zhang & Maxym V. Myroshnychenko & Jean Tyan & Joshua A. Gordon & David A. Kupferschmidt & Yi Gu, 2024. "A consistent map in the medial entorhinal cortex supports spatial memory," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    20. Sayedali Shetab Boushehri & Katharina Essig & Nikolaos-Kosmas Chlis & Sylvia Herter & Marina Bacac & Fabian J. Theis & Elke Glasmacher & Carsten Marr & Fabian Schmich, 2023. "Explainable machine learning for profiling the immunological synapse and functional characterization of therapeutic antibodies," Nature Communications, Nature, vol. 14(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41803-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.