IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i19p5197-d424056.html
   My bibliography  Save this article

Coastal Wind Power in Southern Santa Catarina, Brazil

Author

Listed:
  • César Henrique Mattos Pires

    (Centro de Ciências Físicas e Matemáticas, Programa de Pós-Graduação em Oceanografia, Campus Trindade, Universidade Federal de Santa Catarina, Florianópolis, SC 88010-970, Brazil)

  • Felipe M. Pimenta

    (Centro de Ciências Físicas e Matemáticas, Programa de Pós-Graduação em Oceanografia, Campus Trindade, Universidade Federal de Santa Catarina, Florianópolis, SC 88010-970, Brazil)

  • Carla A. D'Aquino

    (Departamento de Energia e Sustentabilidade, Centro de Ciências, Tecnologias e Saúde, Unidade Jardim das Avenidas, Campus Araranguá, Universidade Federal de Santa Catarina, Araranguá, SC 88906-072, Brazil)

  • Osvaldo R. Saavedra

    (Instituto de Energia Elétrica, Universidade Federal do Maranhão, Av. dos Portugueses s/n, Bacanga, São Luís, MA 65080-040, Brazil)

  • Xuerui Mao

    (Faculty of Engineering, University Park, Room B109 Coates Building, Nottingham NG7 2RD, UK)

  • Arcilan T. Assireu

    (Instituto de Recursos Naturais, Universidade Federal de Itajubá, Av. BPS 1303, Pinheirinho, Itajubá, MG 37500-903, Brazil)

Abstract

A light detection and ranging (LIDAR) wind profiler was used to estimate the wind speed in the southern coast of Santa Catarina State, Brazil. This profiler was installed on a coastal platform 250 m from the beach, and recorded wind speed and direction from January 2017 to December 2018. The power generation from three wind turbines was simulated, to obtain estimations of the average power, energy generation and capacity factor, as well as to assess the performance of a hypothetical wind farm. The scale and shape parameters of the Weibull distribution were evaluated and compared with those of other localities in the state. The prevailing winds tend to blow predominantly from the northeast and southwest directions. Wind magnitudes are higher for the NE and SW ocean sectors where the average wind power density can reach 610–820 W m −2 . The Vestas 3.0 turbine spent the largest percentage of time in operation (>76%). The higher incidence of strong northeasterly winds in 2017 and more frequent passage of cold fronts in 2018 were attributed to the cycle of the South Atlantic subtropical high. The results demonstrate a significant coastal wind power potential, and suggest that there is a significant increase of resources offshore.

Suggested Citation

  • César Henrique Mattos Pires & Felipe M. Pimenta & Carla A. D'Aquino & Osvaldo R. Saavedra & Xuerui Mao & Arcilan T. Assireu, 2020. "Coastal Wind Power in Southern Santa Catarina, Brazil," Energies, MDPI, vol. 13(19), pages 1-23, October.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:19:p:5197-:d:424056
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/19/5197/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/19/5197/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rodrigues, S. & Restrepo, C. & Kontos, E. & Teixeira Pinto, R. & Bauer, P., 2015. "Trends of offshore wind projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1114-1135.
    2. Pimenta, Felipe & Kempton, Willett & Garvine, Richard, 2008. "Combining meteorological stations and satellite data to evaluate the offshore wind power resource of Southeastern Brazil," Renewable Energy, Elsevier, vol. 33(11), pages 2375-2387.
    3. Chang, Tian Pau, 2011. "Performance comparison of six numerical methods in estimating Weibull parameters for wind energy application," Applied Energy, Elsevier, vol. 88(1), pages 272-282, January.
    4. Wais, Piotr, 2017. "A review of Weibull functions in wind sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1099-1107.
    5. Esteban, M. Dolores & Diez, J. Javier & López, Jose S. & Negro, Vicente, 2011. "Why offshore wind energy?," Renewable Energy, Elsevier, vol. 36(2), pages 444-450.
    6. Chang, Tian Pau, 2011. "Estimation of wind energy potential using different probability density functions," Applied Energy, Elsevier, vol. 88(5), pages 1848-1856, May.
    7. Berens, Philipp, 2009. "CircStat: A MATLAB Toolbox for Circular Statistics," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 31(i10).
    8. Felipe M. Pimenta & Allan R. Silva & Arcilan T. Assireu & Vinicio de S. e Almeida & Osvaldo R. Saavedra, 2019. "Brazil Offshore Wind Resources and Atmospheric Surface Layer Stability," Energies, MDPI, vol. 12(21), pages 1-21, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Italo Fernandes & Felipe M. Pimenta & Osvaldo R. Saavedra & Arcilan T. Assireu, 2022. "Exploring the Complementarity of Offshore Wind Sites to Reduce the Seasonal Variability of Generation," Energies, MDPI, vol. 15(19), pages 1-24, September.
    2. Arkadiusz Dobrzycki & Jacek Roman, 2022. "Correlation between the Production of Electricity by Offshore Wind Farms and the Demand for Electricity in Polish Conditions," Energies, MDPI, vol. 15(10), pages 1-18, May.
    3. Milad Shadman & Mateo Roldan-Carvajal & Fabian G. Pierart & Pablo Alejandro Haim & Rodrigo Alonso & Corbiniano Silva & Andrés F. Osorio & Nathalie Almonacid & Griselda Carreras & Mojtaba Maali Amiri &, 2023. "A Review of Offshore Renewable Energy in South America: Current Status and Future Perspectives," Sustainability, MDPI, vol. 15(2), pages 1-34, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shu, Z.R. & Li, Q.S. & Chan, P.W., 2015. "Investigation of offshore wind energy potential in Hong Kong based on Weibull distribution function," Applied Energy, Elsevier, vol. 156(C), pages 362-373.
    2. Alkhalidi, Mohamad A. & Al-Dabbous, Shoug Kh. & Neelamani, S. & Aldashti, Hassan A., 2019. "Wind energy potential at coastal and offshore locations in the state of Kuwait," Renewable Energy, Elsevier, vol. 135(C), pages 529-539.
    3. Chen, Xinping & Foley, Aoife & Zhang, Zenghai & Wang, Kaimin & O'Driscoll, Kieran, 2020. "An assessment of wind energy potential in the Beibu Gulf considering the energy demands of the Beibu Gulf Economic Rim," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    4. de Assis Tavares, Luiz Filipe & Shadman, Milad & de Freitas Assad, Luiz Paulo & Silva, Corbiniano & Landau, Luiz & Estefen, Segen F., 2020. "Assessment of the offshore wind technical potential for the Brazilian Southeast and South regions," Energy, Elsevier, vol. 196(C).
    5. Italo Fernandes & Felipe M. Pimenta & Osvaldo R. Saavedra & Arcilan T. Assireu, 2022. "Exploring the Complementarity of Offshore Wind Sites to Reduce the Seasonal Variability of Generation," Energies, MDPI, vol. 15(19), pages 1-24, September.
    6. Katinas, Vladislovas & Gecevicius, Giedrius & Marciukaitis, Mantas, 2018. "An investigation of wind power density distribution at location with low and high wind speeds using statistical model," Applied Energy, Elsevier, vol. 218(C), pages 442-451.
    7. Chang, Tian-Pau & Ko, Hong-Hsi & Liu, Feng-Jiao & Chen, Pai-Hsun & Chang, Ying-Pin & Liang, Ying-Hsin & Jang, Horng-Yuan & Lin, Tsung-Chi & Chen, Yi-Hwa, 2012. "Fractal dimension of wind speed time series," Applied Energy, Elsevier, vol. 93(C), pages 742-749.
    8. Deep, Sneh & Sarkar, Arnab & Ghawat, Mayur & Rajak, Manoj Kumar, 2020. "Estimation of the wind energy potential for coastal locations in India using the Weibull model," Renewable Energy, Elsevier, vol. 161(C), pages 319-339.
    9. Felipe M. Pimenta & Allan R. Silva & Arcilan T. Assireu & Vinicio de S. e Almeida & Osvaldo R. Saavedra, 2019. "Brazil Offshore Wind Resources and Atmospheric Surface Layer Stability," Energies, MDPI, vol. 12(21), pages 1-21, November.
    10. Kamila Pronińska & Krzysztof Księżopolski, 2021. "Baltic Offshore Wind Energy Development—Poland’s Public Policy Tools Analysis and the Geostrategic Implications," Energies, MDPI, vol. 14(16), pages 1-17, August.
    11. Xu, Lei & Wang, Shengwei & Tang, Rui, 2019. "Probabilistic load forecasting for buildings considering weather forecasting uncertainty and uncertain peak load," Applied Energy, Elsevier, vol. 237(C), pages 180-195.
    12. Emilio Gómez-Lázaro & María C. Bueso & Mathieu Kessler & Sergio Martín-Martínez & Jie Zhang & Bri-Mathias Hodge & Angel Molina-García, 2016. "Probability Density Function Characterization for Aggregated Large-Scale Wind Power Based on Weibull Mixtures," Energies, MDPI, vol. 9(2), pages 1-15, February.
    13. Silvio Rodrigues & Carlos Restrepo & George Katsouris & Rodrigo Teixeira Pinto & Maryam Soleimanzadeh & Peter Bosman & Pavol Bauer, 2016. "A Multi-Objective Optimization Framework for Offshore Wind Farm Layouts and Electric Infrastructures," Energies, MDPI, vol. 9(3), pages 1-42, March.
    14. He, J.Y. & Li, Q.S. & Chan, P.W. & Zhao, X.D., 2023. "Assessment of future wind resources under climate change using a multi-model and multi-method ensemble approach," Applied Energy, Elsevier, vol. 329(C).
    15. Guglielmo D’Amico & Giovanni Masala & Filippo Petroni & Robert Adam Sobolewski, 2020. "Managing Wind Power Generation via Indexed Semi-Markov Model and Copula," Energies, MDPI, vol. 13(16), pages 1-21, August.
    16. Akdağ, Seyit Ahmet & Güler, Önder, 2018. "Alternative Moment Method for wind energy potential and turbine energy output estimation," Renewable Energy, Elsevier, vol. 120(C), pages 69-77.
    17. Celik, Ali N. & Kolhe, Mohan, 2013. "Generalized feed-forward based method for wind energy prediction," Applied Energy, Elsevier, vol. 101(C), pages 582-588.
    18. Erika Carvalho Nogueira & Rafael Cancella Morais & Amaro Olimpio Pereira, 2023. "Offshore Wind Power Potential in Brazil: Complementarity and Synergies," Energies, MDPI, vol. 16(16), pages 1-18, August.
    19. Mazhar Hussain Baloch & Dahaman Ishak & Sohaib Tahir Chaudary & Baqir Ali & Ali Asghar Memon & Touqeer Ahmed Jumani, 2019. "Wind Power Integration: An Experimental Investigation for Powering Local Communities," Energies, MDPI, vol. 12(4), pages 1-24, February.
    20. He, J.Y. & Chan, P.W. & Li, Q.S. & Lee, C.W., 2022. "Characterizing coastal wind energy resources based on sodar and microwave radiometer observations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:19:p:5197-:d:424056. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.