IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-44762-w.html
   My bibliography  Save this article

Spin-resolved topology and partial axion angles in three-dimensional insulators

Author

Listed:
  • Kuan-Sen Lin

    (University of Illinois at Urbana-Champaign
    University of California)

  • Giandomenico Palumbo

    (Dublin Institute for Advanced Studies)

  • Zhaopeng Guo

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Yoonseok Hwang

    (University of Illinois at Urbana-Champaign)

  • Jeremy Blackburn

    (State University of New York at Binghamton)

  • Daniel P. Shoemaker

    (University of Illinois at Urbana-Champaign
    University of Illinois at Urbana-Champaign)

  • Fahad Mahmood

    (University of Illinois at Urbana-Champaign
    University of Illinois at Urbana-Champaign)

  • Zhijun Wang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Gregory A. Fiete

    (Northeastern University
    Massachusetts Institute of Technology)

  • Benjamin J. Wieder

    (Northeastern University
    Massachusetts Institute of Technology
    Université Paris-Saclay, CEA, CNRS)

  • Barry Bradlyn

    (University of Illinois at Urbana-Champaign)

Abstract

Symmetry-protected topological crystalline insulators (TCIs) have primarily been characterized by their gapless boundary states. However, in time-reversal- ( $${{{{{{{\mathcal{T}}}}}}}}$$ T -) invariant (helical) 3D TCIs—termed higher-order TCIs (HOTIs)—the boundary signatures can manifest as a sample-dependent network of 1D hinge states. We here introduce nested spin-resolved Wilson loops and layer constructions as tools to characterize the intrinsic bulk topological properties of spinful 3D insulators. We discover that helical HOTIs realize one of three spin-resolved phases with distinct responses that are quantitatively robust to large deformations of the bulk spin-orbital texture: 3D quantum spin Hall insulators (QSHIs), “spin-Weyl” semimetals, and $${{{{{{{\mathcal{T}}}}}}}}$$ T -doubled axion insulator (T-DAXI) states with nontrivial partial axion angles indicative of a 3D spin-magnetoelectric bulk response and half-quantized 2D TI surface states originating from a partial parity anomaly. Using ab-initio calculations, we demonstrate that β-MoTe2 realizes a spin-Weyl state and that α-BiBr hosts both 3D QSHI and T-DAXI regimes.

Suggested Citation

  • Kuan-Sen Lin & Giandomenico Palumbo & Zhaopeng Guo & Yoonseok Hwang & Jeremy Blackburn & Daniel P. Shoemaker & Fahad Mahmood & Zhijun Wang & Gregory A. Fiete & Benjamin J. Wieder & Barry Bradlyn, 2024. "Spin-resolved topology and partial axion angles in three-dimensional insulators," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-44762-w
    DOI: 10.1038/s41467-024-44762-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-44762-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-44762-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Motoi Kimata & Hua Chen & Kouta Kondou & Satoshi Sugimoto & Prasanta K. Muduli & Muhammad Ikhlas & Yasutomo Omori & Takahiro Tomita & Allan. H. MacDonald & Satoru Nakatsuji & Yoshichika Otani, 2019. "Publisher Correction: Magnetic and magnetic inverse spin Hall effects in a non-collinear antiferromagnet," Nature, Nature, vol. 566(7742), pages 4-4, February.
    2. M. G. Vergniory & L. Elcoro & Claudia Felser & Nicolas Regnault & B. Andrei Bernevig & Zhijun Wang, 2019. "A complete catalogue of high-quality topological materials," Nature, Nature, vol. 566(7745), pages 480-485, February.
    3. Zhida Song & Tiantian Zhang & Zhong Fang & Chen Fang, 2018. "Quantitative mappings between symmetry and topology in solids," Nature Communications, Nature, vol. 9(1), pages 1-7, December.
    4. Barry Bradlyn & L. Elcoro & Jennifer Cano & M. G. Vergniory & Zhijun Wang & C. Felser & M. I. Aroyo & B. Andrei Bernevig, 2017. "Topological quantum chemistry," Nature, Nature, vol. 547(7663), pages 298-305, July.
    5. Benjamin J. Wieder & Zhijun Wang & Jennifer Cano & Xi Dai & Leslie M. Schoop & Barry Bradlyn & B. Andrei Bernevig, 2020. "Strong and fragile topological Dirac semimetals with higher-order Fermi arcs," Nature Communications, Nature, vol. 11(1), pages 1-13, December.
    6. Feng Tang & Hoi Chun Po & Ashvin Vishwanath & Xiangang Wan, 2019. "Comprehensive search for topological materials using symmetry indicators," Nature, Nature, vol. 566(7745), pages 486-489, February.
    7. Yuanfeng Xu & Luis Elcoro & Zhi-Da Song & Benjamin J. Wieder & M. G. Vergniory & Nicolas Regnault & Yulin Chen & Claudia Felser & B. Andrei Bernevig, 2020. "High-throughput calculations of magnetic topological materials," Nature, Nature, vol. 586(7831), pages 702-707, October.
    8. Motoi Kimata & Hua Chen & Kouta Kondou & Satoshi Sugimoto & Prasanta K. Muduli & Muhammad Ikhlas & Yasutomo Omori & Takahiro Tomita & Allan. H. MacDonald & Satoru Nakatsuji & Yoshichika Otani, 2019. "Magnetic and magnetic inverse spin Hall effects in a non-collinear antiferromagnet," Nature, Nature, vol. 565(7741), pages 627-630, January.
    9. Luis Elcoro & Benjamin J. Wieder & Zhida Song & Yuanfeng Xu & Barry Bradlyn & B. Andrei Bernevig, 2021. "Magnetic topological quantum chemistry," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    10. Tiantian Zhang & Yi Jiang & Zhida Song & He Huang & Yuqing He & Zhong Fang & Hongming Weng & Chen Fang, 2019. "Catalogue of topological electronic materials," Nature, Nature, vol. 566(7745), pages 475-479, February.
    11. Anyuan Gao & Yu-Fei Liu & Chaowei Hu & Jian-Xiang Qiu & Christian Tzschaschel & Barun Ghosh & Sheng-Chin Ho & Damien Bérubé & Rui Chen & Haipeng Sun & Zhaowei Zhang & Xin-Yue Zhang & Yu-Xuan Wang & Na, 2021. "Layer Hall effect in a 2D topological axion antiferromagnet," Nature, Nature, vol. 595(7868), pages 521-525, July.
    12. Hoi Chun Po & Ashvin Vishwanath & Haruki Watanabe, 2017. "Erratum: Symmetry-based indicators of band topology in the 230 space groups," Nature Communications, Nature, vol. 8(1), pages 1-1, December.
    13. Fei-Ting Huang & Seong Joon Lim & Sobhit Singh & Jinwoong Kim & Lunyong Zhang & Jae-Wook Kim & Ming-Wen Chu & Karin M. Rabe & David Vanderbilt & Sang-Wook Cheong, 2019. "Polar and phase domain walls with conducting interfacial states in a Weyl semimetal MoTe2," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    14. A. R. Mellnik & J. S. Lee & A. Richardella & J. L. Grab & P. J. Mintun & M. H. Fischer & A. Vaezi & A. Manchon & E.-A. Kim & N. Samarth & D. C. Ralph, 2014. "Spin-transfer torque generated by a topological insulator," Nature, Nature, vol. 511(7510), pages 449-451, July.
    15. Timothy H. Hsieh & Hsin Lin & Junwei Liu & Wenhui Duan & Arun Bansil & Liang Fu, 2012. "Topological crystalline insulators in the SnTe material class," Nature Communications, Nature, vol. 3(1), pages 1-7, January.
    16. Hoi Chun Po & Ashvin Vishwanath & Haruki Watanabe, 2017. "Symmetry-based indicators of band topology in the 230 space groups," Nature Communications, Nature, vol. 8(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shuai Li & Ming Gong & Yu-Hang Li & Hua Jiang & X. C. Xie, 2024. "High spin axion insulator," Nature Communications, Nature, vol. 15(1), pages 1-8, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Frank Schindler & Stepan S. Tsirkin & Titus Neupert & B. Andrei Bernevig & Benjamin J. Wieder, 2022. "Topological zero-dimensional defect and flux states in three-dimensional insulators," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    2. Jiabin Yu & Rui-Xing Zhang & Zhi-Da Song, 2021. "Dynamical symmetry indicators for Floquet crystals," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    3. Luis Elcoro & Benjamin J. Wieder & Zhida Song & Yuanfeng Xu & Barry Bradlyn & B. Andrei Bernevig, 2021. "Magnetic topological quantum chemistry," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    4. Zhongyi Zhang & Zhenfei Wu & Chen Fang & Fu-chun Zhang & Jiangping Hu & Yuxuan Wang & Shengshan Qin, 2024. "Topological superconductivity from unconventional band degeneracy with conventional pairing," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    5. Chunyu Guo & A. Alexandradinata & Carsten Putzke & Amelia Estry & Teng Tu & Nitesh Kumar & Feng-Ren Fan & Shengnan Zhang & Quansheng Wu & Oleg V. Yazyev & Kent R. Shirer & Maja D. Bachmann & Hailin Pe, 2021. "Temperature dependence of quantum oscillations from non-parabolic dispersions," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    6. Han Wu & Lei Chen & Paul Malinowski & Bo Gyu Jang & Qinwen Deng & Kirsty Scott & Jianwei Huang & Jacob P. C. Ruff & Yu He & Xiang Chen & Chaowei Hu & Ziqin Yue & Ji Seop Oh & Xiaokun Teng & Yucheng Gu, 2024. "Reversible non-volatile electronic switching in a near-room-temperature van der Waals ferromagnet," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    7. Jonah Herzog-Arbeitman & B. Andrei Bernevig & Zhi-Da Song, 2024. "Interacting topological quantum chemistry in 2D with many-body real space invariants," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    8. Sungjoon Park & Yoonseok Hwang & Hong Chul Choi & Bohm-Jung Yang, 2021. "Topological acoustic triple point," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    9. Wenting Cheng & Alexander Cerjan & Ssu-Ying Chen & Emil Prodan & Terry A. Loring & Camelia Prodan, 2023. "Revealing topology in metals using experimental protocols inspired by K-theory," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    10. Lei Chen & Fang Xie & Shouvik Sur & Haoyu Hu & Silke Paschen & Jennifer Cano & Qimiao Si, 2024. "Emergent flat band and topological Kondo semimetal driven by orbital-selective correlations," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    11. Fa-Jie Wang & Zhen-Yu Xiao & Raquel Queiroz & B. Andrei Bernevig & Ady Stern & Zhi-Da Song, 2024. "Anderson critical metal phase in trivial states protected by average magnetic crystalline symmetry," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    12. Robert-Jan Slager & Adrien Bouhon & F. Nur Ünal, 2024. "Non-Abelian Floquet braiding and anomalous Dirac string phase in periodically driven systems," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    13. M. dos Santos Dias & N. Biniskos & F. J. dos Santos & K. Schmalzl & J. Persson & F. Bourdarot & N. Marzari & S. Blügel & T. Brückel & S. Lounis, 2023. "Topological magnons driven by the Dzyaloshinskii-Moriya interaction in the centrosymmetric ferromagnet Mn5Ge3," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    14. Kouta Kondou & Hua Chen & Takahiro Tomita & Muhammad Ikhlas & Tomoya Higo & Allan H. MacDonald & Satoru Nakatsuji & YoshiChika Otani, 2021. "Giant field-like torque by the out-of-plane magnetic spin Hall effect in a topological antiferromagnet," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    15. Tian Le & Ruihan Zhang & Changcun Li & Ruiyang Jiang & Haohao Sheng & Linfeng Tu & Xuewei Cao & Zhaozheng Lyu & Jie Shen & Guangtong Liu & Fucai Liu & Zhijun Wang & Li Lu & Fanming Qu, 2024. "Magnetic field filtering of the boundary supercurrent in unconventional metal NiTe2-based Josephson junctions," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    16. Wenxuan Zhao & Ming Yang & Runzhe Xu & Xian Du & Yidian Li & Kaiyi Zhai & Cheng Peng & Ding Pei & Han Gao & Yiwei Li & Lixuan Xu & Junfeng Han & Yuan Huang & Zhongkai Liu & Yugui Yao & Jincheng Zhuang, 2023. "Topological electronic structure and spin texture of quasi-one-dimensional higher-order topological insulator Bi4Br4," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    17. Delin Zhang & Wei Jiang & Hwanhui Yun & Onri Jay Benally & Thomas Peterson & Zach Cresswell & Yihong Fan & Yang Lv & Guichuan Yu & Javier Garcia Barriocanal & Przemyslaw Wojciech Swatek & K. Andre Mkh, 2023. "Robust negative longitudinal magnetoresistance and spin–orbit torque in sputtered Pt3Sn and Pt3SnxFe1-x topological semimetal," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    18. Rafael González-Hernández & Philipp Ritzinger & Karel Výborný & Jakub Železný & Aurélien Manchon, 2024. "Non-relativistic torque and Edelstein effect in non-collinear magnets," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    19. Binoy K. Hazra & Banabir Pal & Jae-Chun Jeon & Robin R. Neumann & Börge Göbel & Bharat Grover & Hakan Deniz & Andriy Styervoyedov & Holger Meyerheim & Ingrid Mertig & See-Hun Yang & Stuart S. P. Parki, 2023. "Generation of out-of-plane polarized spin current by spin swapping," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    20. Zhenyi Zheng & Tao Zeng & Tieyang Zhao & Shu Shi & Lizhu Ren & Tongtong Zhang & Lanxin Jia & Youdi Gu & Rui Xiao & Hengan Zhou & Qihan Zhang & Jiaqi Lu & Guilei Wang & Chao Zhao & Huihui Li & Beng Kan, 2024. "Effective electrical manipulation of a topological antiferromagnet by orbital torques," Nature Communications, Nature, vol. 15(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-44762-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.