IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v511y2014i7510d10.1038_nature13534.html
   My bibliography  Save this article

Spin-transfer torque generated by a topological insulator

Author

Listed:
  • A. R. Mellnik

    (Cornell University)

  • J. S. Lee

    (The Pennsylvania State University, University Park)

  • A. Richardella

    (The Pennsylvania State University, University Park)

  • J. L. Grab

    (Cornell University)

  • P. J. Mintun

    (Cornell University)

  • M. H. Fischer

    (Cornell University
    Weizmann Institute of Science, Rehovot 76100, Israel)

  • A. Vaezi

    (Cornell University)

  • A. Manchon

    (King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia)

  • E.-A. Kim

    (Cornell University)

  • N. Samarth

    (The Pennsylvania State University, University Park)

  • D. C. Ralph

    (Cornell University
    Kavli Institute at Cornell)

Abstract

Charge flowing in a thin film of the topological insulator bismuth selenide at room temperature can lead to spin accumulation in the insulator and a resultant strong spin-transfer torque on an adjacent thin film of ferromagnetic nickel–iron alloy, potentially offering a means of controlling the orientation of the alloy’s magnetization.

Suggested Citation

  • A. R. Mellnik & J. S. Lee & A. Richardella & J. L. Grab & P. J. Mintun & M. H. Fischer & A. Vaezi & A. Manchon & E.-A. Kim & N. Samarth & D. C. Ralph, 2014. "Spin-transfer torque generated by a topological insulator," Nature, Nature, vol. 511(7510), pages 449-451, July.
  • Handle: RePEc:nat:nature:v:511:y:2014:i:7510:d:10.1038_nature13534
    DOI: 10.1038/nature13534
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature13534
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature13534?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lijun Zhu & Daniel C. Ralph, 2023. "Strong variation of spin-orbit torques with relative spin relaxation rates in ferrimagnets," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Kouta Kondou & Hua Chen & Takahiro Tomita & Muhammad Ikhlas & Tomoya Higo & Allan H. MacDonald & Satoru Nakatsuji & YoshiChika Otani, 2021. "Giant field-like torque by the out-of-plane magnetic spin Hall effect in a topological antiferromagnet," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    3. Haiyu Wang & Hao Wu & Jie Zhang & Yingjie Liu & Dongdong Chen & Chandan Pandey & Jialiang Yin & Dahai Wei & Na Lei & Shuyuan Shi & Haichang Lu & Peng Li & Albert Fert & Kang L. Wang & Tianxiao Nie & W, 2023. "Room temperature energy-efficient spin-orbit torque switching in two-dimensional van der Waals Fe3GeTe2 induced by topological insulators," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Kuan-Sen Lin & Giandomenico Palumbo & Zhaopeng Guo & Yoonseok Hwang & Jeremy Blackburn & Daniel P. Shoemaker & Fahad Mahmood & Zhijun Wang & Gregory A. Fiete & Benjamin J. Wieder & Barry Bradlyn, 2024. "Spin-resolved topology and partial axion angles in three-dimensional insulators," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    5. Yong Xu & Fan Zhang & Albert Fert & Henri-Yves Jaffres & Yongshan Liu & Renyou Xu & Yuhao Jiang & Houyi Cheng & Weisheng Zhao, 2024. "Orbitronics: light-induced orbital currents in Ni studied by terahertz emission experiments," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    6. Yuki Hibino & Tomohiro Taniguchi & Kay Yakushiji & Akio Fukushima & Hitoshi Kubota & Shinji Yuasa, 2021. "Giant charge-to-spin conversion in ferromagnet via spin-orbit coupling," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    7. Andrey Polyakov & Katayoon Mohseni & Roberto Felici & Christian Tusche & Ying-Jun Chen & Vitaly Feyer & Jochen Geck & Tobias Ritschel & Arthur Ernst & Juan Rubio-Zuazo & German R. Castro & Holger L. M, 2022. "Fermi surface chirality induced in a TaSe2 monosheet formed by a Ta/Bi2Se3 interface reaction," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    8. Jia-nan Liu & Xu Yang & Haopu Xue & Xue-song Gai & Rui Sun & Yang Li & Zi-Zhao Gong & Na Li & Zong-Kai Xie & Wei He & Xiang-Qun Zhang & Desheng Xue & Zhao-Hua Cheng, 2023. "Surface coupling in Bi2Se3 ultrathin films by screened Coulomb interaction," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    9. Hao Wu & Aitian Chen & Peng Zhang & Haoran He & John Nance & Chenyang Guo & Julian Sasaki & Takanori Shirokura & Pham Nam Hai & Bin Fang & Seyed Armin Razavi & Kin Wong & Yan Wen & Yinchang Ma & Guoqi, 2021. "Magnetic memory driven by topological insulators," Nature Communications, Nature, vol. 12(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:511:y:2014:i:7510:d:10.1038_nature13534. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.