IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-47103-z.html
   My bibliography  Save this article

Magnetic field filtering of the boundary supercurrent in unconventional metal NiTe2-based Josephson junctions

Author

Listed:
  • Tian Le

    (Chinese Academy of Sciences)

  • Ruihan Zhang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Changcun Li

    (University of Electronic Science and Technology of China)

  • Ruiyang Jiang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Haohao Sheng

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Linfeng Tu

    (Chinese Academy of Sciences
    Nankai University)

  • Xuewei Cao

    (Nankai University)

  • Zhaozheng Lyu

    (Chinese Academy of Sciences
    Hefei National Laboratory)

  • Jie Shen

    (Chinese Academy of Sciences
    Songshan Lake Materials Laboratory)

  • Guangtong Liu

    (Chinese Academy of Sciences
    Hefei National Laboratory
    Songshan Lake Materials Laboratory)

  • Fucai Liu

    (University of Electronic Science and Technology of China
    University of Electronic Science and Technology of China)

  • Zhijun Wang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Li Lu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences
    Hefei National Laboratory
    Songshan Lake Materials Laboratory)

  • Fanming Qu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences
    Hefei National Laboratory
    Songshan Lake Materials Laboratory)

Abstract

Topological materials with boundary (surface/edge/hinge) states have attracted tremendous research interest. Additionally, unconventional (obstructed atomic) materials have recently drawn lots of attention owing to their obstructed boundary states. Experimentally, Josephson junctions (JJs) constructed on materials with boundary states produce the peculiar boundary supercurrent, which was utilized as a powerful diagnostic approach. Here, we report the observations of boundary supercurrent in NiTe2-based JJs. Particularly, applying an in-plane magnetic field along the Josephson current can rapidly suppress the bulk supercurrent and retain the nearly pure boundary supercurrent, namely the magnetic field filtering of supercurrent. Further systematic comparative analysis and theoretical calculations demonstrate the existence of unconventional nature and obstructed hinge states in NiTe2, which could produce hinge supercurrent that accounts for the observation. Our results reveal the probable hinge states in unconventional metal NiTe2, and demonstrate in-plane magnetic field as an efficient method to filter out the bulk contributions and thereby to highlight the hinge states hidden in topological/unconventional materials.

Suggested Citation

  • Tian Le & Ruihan Zhang & Changcun Li & Ruiyang Jiang & Haohao Sheng & Linfeng Tu & Xuewei Cao & Zhaozheng Lyu & Jie Shen & Guangtong Liu & Fucai Liu & Zhijun Wang & Li Lu & Fanming Qu, 2024. "Magnetic field filtering of the boundary supercurrent in unconventional metal NiTe2-based Josephson junctions," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47103-z
    DOI: 10.1038/s41467-024-47103-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-47103-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-47103-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Heng Wu & Yaojia Wang & Yuanfeng Xu & Pranava K. Sivakumar & Chris Pasco & Ulderico Filippozzi & Stuart S. P. Parkin & Yu-Jia Zeng & Tyrel McQueen & Mazhar N. Ali, 2022. "The field-free Josephson diode in a van der Waals heterostructure," Nature, Nature, vol. 604(7907), pages 653-656, April.
    2. M. G. Vergniory & L. Elcoro & Claudia Felser & Nicolas Regnault & B. Andrei Bernevig & Zhijun Wang, 2019. "A complete catalogue of high-quality topological materials," Nature, Nature, vol. 566(7745), pages 480-485, February.
    3. Barry Bradlyn & L. Elcoro & Jennifer Cano & M. G. Vergniory & Zhijun Wang & C. Felser & M. I. Aroyo & B. Andrei Bernevig, 2017. "Topological quantum chemistry," Nature, Nature, vol. 547(7663), pages 298-305, July.
    4. Benjamin J. Wieder & Zhijun Wang & Jennifer Cano & Xi Dai & Leslie M. Schoop & Barry Bradlyn & B. Andrei Bernevig, 2020. "Strong and fragile topological Dirac semimetals with higher-order Fermi arcs," Nature Communications, Nature, vol. 11(1), pages 1-13, December.
    5. Cai-Zhen Li & An-Qi Wang & Chuan Li & Wen-Zhuang Zheng & Alexander Brinkman & Da-Peng Yu & Zhi-Min Liao, 2020. "Fermi-arc supercurrent oscillations in Dirac semimetal Josephson junctions," Nature Communications, Nature, vol. 11(1), pages 1-7, December.
    6. M. J. Zhu & A. V. Kretinin & M. D. Thompson & D. A. Bandurin & S. Hu & G. L. Yu & J. Birkbeck & A. Mishchenko & I. J. Vera-Marun & K. Watanabe & T. Taniguchi & M. Polini & J. R. Prance & K. S. Novosel, 2017. "Edge currents shunt the insulating bulk in gapped graphene," Nature Communications, Nature, vol. 8(1), pages 1-6, April.
    7. Angela Q. Chen & Moon Jip Park & Stephen T. Gill & Yiran Xiao & Dalmau Reig-i-Plessis & Gregory J. MacDougall & Matthew J. Gilbert & Nadya Mason, 2018. "Finite momentum Cooper pairing in three-dimensional topological insulator Josephson junctions," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kuan-Sen Lin & Giandomenico Palumbo & Zhaopeng Guo & Yoonseok Hwang & Jeremy Blackburn & Daniel P. Shoemaker & Fahad Mahmood & Zhijun Wang & Gregory A. Fiete & Benjamin J. Wieder & Barry Bradlyn, 2024. "Spin-resolved topology and partial axion angles in three-dimensional insulators," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    2. Frank Schindler & Stepan S. Tsirkin & Titus Neupert & B. Andrei Bernevig & Benjamin J. Wieder, 2022. "Topological zero-dimensional defect and flux states in three-dimensional insulators," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    3. Chunyu Guo & A. Alexandradinata & Carsten Putzke & Amelia Estry & Teng Tu & Nitesh Kumar & Feng-Ren Fan & Shengnan Zhang & Quansheng Wu & Oleg V. Yazyev & Kent R. Shirer & Maja D. Bachmann & Hailin Pe, 2021. "Temperature dependence of quantum oscillations from non-parabolic dispersions," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    4. Jiabin Yu & Rui-Xing Zhang & Zhi-Da Song, 2021. "Dynamical symmetry indicators for Floquet crystals," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    5. Luis Elcoro & Benjamin J. Wieder & Zhida Song & Yuanfeng Xu & Barry Bradlyn & B. Andrei Bernevig, 2021. "Magnetic topological quantum chemistry," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    6. Abdulhakim Bake & Qi Zhang & Cong Son Ho & Grace L. Causer & Weiyao Zhao & Zengji Yue & Alexander Nguyen & Golrokh Akhgar & Julie Karel & David Mitchell & Zeljko Pastuovic & Roger Lewis & Jared H. Col, 2023. "Top-down patterning of topological surface and edge states using a focused ion beam," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    7. Zhiqiang Gao & Tian-Ran Wei & Tingting Deng & Pengfei Qiu & Wei Xu & Yuecun Wang & Lidong Chen & Xun Shi, 2022. "High-throughput screening of 2D van der Waals crystals with plastic deformability," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    8. Jinyu Liu & Yinong Zhou & Sebastian Yepez Rodriguez & Matthew A. Delmont & Robert A. Welser & Triet Ho & Nicholas Sirica & Kaleb McClure & Paolo Vilmercati & Joseph W. Ziller & Norman Mannella & Javie, 2024. "Controllable strain-driven topological phase transition and dominant surface-state transport in HfTe5," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    9. Jonah Herzog-Arbeitman & B. Andrei Bernevig & Zhi-Da Song, 2024. "Interacting topological quantum chemistry in 2D with many-body real space invariants," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    10. Lun-Hui Hu & Rui-Xing Zhang, 2024. "Dislocation Majorana bound states in iron-based superconductors," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    11. Sungjoon Park & Yoonseok Hwang & Hong Chul Choi & Bohm-Jung Yang, 2021. "Topological acoustic triple point," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    12. Haitao Yang & Yuhan Ye & Zhen Zhao & Jiali Liu & Xin-Wei Yi & Yuhang Zhang & Hongqin Xiao & Jinan Shi & Jing-Yang You & Zihao Huang & Bingjie Wang & Jing Wang & Hui Guo & Xiao Lin & Chengmin Shen & Wu, 2024. "Superconductivity and nematic order in a new titanium-based kagome metal CsTi3Bi5 without charge density wave order," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    13. Julian Schulz & Jiho Noh & Wladimir A. Benalcazar & Gaurav Bahl & Georg von Freymann, 2022. "Photonic quadrupole topological insulator using orbital-induced synthetic flux," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    14. Wenting Cheng & Alexander Cerjan & Ssu-Ying Chen & Emil Prodan & Terry A. Loring & Camelia Prodan, 2023. "Revealing topology in metals using experimental protocols inspired by K-theory," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    15. Lei Chen & Fang Xie & Shouvik Sur & Haoyu Hu & Silke Paschen & Jennifer Cano & Qimiao Si, 2024. "Emergent flat band and topological Kondo semimetal driven by orbital-selective correlations," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    16. Wuyang Ren & Wenhua Xue & Shuping Guo & Ran He & Liangzi Deng & Shaowei Song & Andrei Sotnikov & Kornelius Nielsch & Jeroen Brink & Guanhui Gao & Shuo Chen & Yimo Han & Jiang Wu & Ching-Wu Chu & Zhimi, 2023. "Vacancy-mediated anomalous phononic and electronic transport in defective half-Heusler ZrNiBi," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    17. Fa-Jie Wang & Zhen-Yu Xiao & Raquel Queiroz & B. Andrei Bernevig & Ady Stern & Zhi-Da Song, 2024. "Anderson critical metal phase in trivial states protected by average magnetic crystalline symmetry," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    18. Song-Bo Zhang & Lun-Hui Hu & Titus Neupert, 2024. "Finite-momentum Cooper pairing in proximitized altermagnets," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    19. Le Duc Anh & Keita Ishihara & Tomoki Hotta & Kohdai Inagaki & Hideki Maki & Takahiro Saeki & Masaki Kobayashi & Masaaki Tanaka, 2024. "Large superconducting diode effect in ion-beam patterned Sn-based superconductor nanowire/topological Dirac semimetal planar heterostructures," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    20. Robert-Jan Slager & Adrien Bouhon & F. Nur Ünal, 2024. "Non-Abelian Floquet braiding and anomalous Dirac string phase in periodically driven systems," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47103-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.