IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-06010-w.html
   My bibliography  Save this article

Quantitative mappings between symmetry and topology in solids

Author

Listed:
  • Zhida Song

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Tiantian Zhang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Zhong Fang

    (Chinese Academy of Sciences)

  • Chen Fang

    (Chinese Academy of Sciences
    CAS Center for Excellence in Topological Quantum Computation)

Abstract

The study of spatial symmetries was accomplished during the last century and had greatly improved our understanding of the properties of solids. Nowadays, the symmetry data of any crystal can be readily extracted from standard first-principles calculation. On the other hand, the topological data (topological invariants), the defining quantities of nontrivial topological states, are in general considerably difficult to obtain, and this difficulty has critically slowed down the search for topological materials. Here we provide explicit and exhaustive mappings from symmetry data to topological data for arbitrary gapped band structure in the presence of time-reversal symmetry and any one of the 230 space groups. The mappings are completed using the theoretical tools of layer construction and symmetry-based indicators. With these results, finding topological invariants in any given gapped band structure reduces to a simple search in the mapping tables provided.

Suggested Citation

  • Zhida Song & Tiantian Zhang & Zhong Fang & Chen Fang, 2018. "Quantitative mappings between symmetry and topology in solids," Nature Communications, Nature, vol. 9(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-06010-w
    DOI: 10.1038/s41467-018-06010-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-06010-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-06010-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jonah Herzog-Arbeitman & B. Andrei Bernevig & Zhi-Da Song, 2024. "Interacting topological quantum chemistry in 2D with many-body real space invariants," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Kuan-Sen Lin & Giandomenico Palumbo & Zhaopeng Guo & Yoonseok Hwang & Jeremy Blackburn & Daniel P. Shoemaker & Fahad Mahmood & Zhijun Wang & Gregory A. Fiete & Benjamin J. Wieder & Barry Bradlyn, 2024. "Spin-resolved topology and partial axion angles in three-dimensional insulators," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    3. Frank Schindler & Stepan S. Tsirkin & Titus Neupert & B. Andrei Bernevig & Benjamin J. Wieder, 2022. "Topological zero-dimensional defect and flux states in three-dimensional insulators," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    4. Zhongyi Zhang & Zhenfei Wu & Chen Fang & Fu-chun Zhang & Jiangping Hu & Yuxuan Wang & Shengshan Qin, 2024. "Topological superconductivity from unconventional band degeneracy with conventional pairing," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-06010-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.