IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-26453-y.html
   My bibliography  Save this article

Giant field-like torque by the out-of-plane magnetic spin Hall effect in a topological antiferromagnet

Author

Listed:
  • Kouta Kondou

    (RIKEN, Center for Emergent Matter Science (CEMS)
    CREST, Japan Science and Technology Agency (JST), Kawaguchi)

  • Hua Chen

    (Colorado State University
    Colorado State University)

  • Takahiro Tomita

    (CREST, Japan Science and Technology Agency (JST), Kawaguchi
    The University of Tokyo, Kashiwa)

  • Muhammad Ikhlas

    (CREST, Japan Science and Technology Agency (JST), Kawaguchi
    The University of Tokyo, Kashiwa)

  • Tomoya Higo

    (CREST, Japan Science and Technology Agency (JST), Kawaguchi
    University of Tokyo, Hongo, Bunkyo-ku)

  • Allan H. MacDonald

    (University of Texas at Austin)

  • Satoru Nakatsuji

    (CREST, Japan Science and Technology Agency (JST), Kawaguchi
    The University of Tokyo, Kashiwa
    University of Tokyo, Hongo, Bunkyo-ku
    University of Tokyo)

  • YoshiChika Otani

    (RIKEN, Center for Emergent Matter Science (CEMS)
    CREST, Japan Science and Technology Agency (JST), Kawaguchi
    The University of Tokyo, Kashiwa
    University of Tokyo)

Abstract

Spin-orbit torques (SOT) enable efficient electrical control of the magnetic state of ferromagnets, ferrimagnets and antiferromagnets. However, the conventional SOT has severe limitation that only in-plane spins accumulate near the surface, whether interpreted as a spin Hall effect (SHE) or as an Edelstein effect. Such a SOT is not suitable for controlling perpendicular magnetization, which would be more beneficial for realizing low-power-consumption memory devices. Here we report the observation of a giant magnetic-field-like SOT in a topological antiferromagnet Mn3Sn, whose direction and size can be tuned by changing the order parameter direction of the antiferromagnet. To understand the magnetic SHE (MSHE)- and the conventional SHE-induced SOTs on an equal footing, we formulate them as interface spin-electric-field responses and analyzed using a macroscopic symmetry analysis and a complementary microscopic quantum kinetic theory. In this framework, the large out-of-plane spin accumulation due to the MSHE has an inter-band origin and is likely to be caused by the large momentum-dependent spin splitting in Mn3Sn. Our work demonstrates the unique potential of antiferromagnetic Weyl semimetals in overcoming the limitations of conventional SOTs and in realizing low-power spintronics devices with new functionalities.

Suggested Citation

  • Kouta Kondou & Hua Chen & Takahiro Tomita & Muhammad Ikhlas & Tomoya Higo & Allan H. MacDonald & Satoru Nakatsuji & YoshiChika Otani, 2021. "Giant field-like torque by the out-of-plane magnetic spin Hall effect in a topological antiferromagnet," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26453-y
    DOI: 10.1038/s41467-021-26453-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-26453-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-26453-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Satoru Nakatsuji & Naoki Kiyohara & Tomoya Higo, 2015. "Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature," Nature, Nature, vol. 527(7577), pages 212-215, November.
    2. Motoi Kimata & Hua Chen & Kouta Kondou & Satoshi Sugimoto & Prasanta K. Muduli & Muhammad Ikhlas & Yasutomo Omori & Takahiro Tomita & Allan. H. MacDonald & Satoru Nakatsuji & Yoshichika Otani, 2019. "Magnetic and magnetic inverse spin Hall effects in a non-collinear antiferromagnet," Nature, Nature, vol. 565(7741), pages 627-630, January.
    3. Hanshen Tsai & Tomoya Higo & Kouta Kondou & Takuya Nomoto & Akito Sakai & Ayuko Kobayashi & Takafumi Nakano & Kay Yakushiji & Ryotaro Arita & Shinji Miwa & Yoshichika Otani & Satoru Nakatsuji, 2020. "Electrical manipulation of a topological antiferromagnetic state," Nature, Nature, vol. 580(7805), pages 608-613, April.
    4. A. R. Mellnik & J. S. Lee & A. Richardella & J. L. Grab & P. J. Mintun & M. H. Fischer & A. Vaezi & A. Manchon & E.-A. Kim & N. Samarth & D. C. Ralph, 2014. "Spin-transfer torque generated by a topological insulator," Nature, Nature, vol. 511(7510), pages 449-451, July.
    5. Motoi Kimata & Hua Chen & Kouta Kondou & Satoshi Sugimoto & Prasanta K. Muduli & Muhammad Ikhlas & Yasutomo Omori & Takahiro Tomita & Allan. H. MacDonald & Satoru Nakatsuji & Yoshichika Otani, 2019. "Publisher Correction: Magnetic and magnetic inverse spin Hall effects in a non-collinear antiferromagnet," Nature, Nature, vol. 566(7742), pages 4-4, February.
    6. T. Nan & C. X. Quintela & J. Irwin & G. Gurung & D. F. Shao & J. Gibbons & N. Campbell & K. Song & S. -Y. Choi & L. Guo & R. D. Johnson & P. Manuel & R. V. Chopdekar & I. Hallsteinsen & T. Tybell & P., 2020. "Controlling spin current polarization through non-collinear antiferromagnetism," Nature Communications, Nature, vol. 11(1), pages 1-7, December.
    7. Taishi Chen & Takahiro Tomita & Susumu Minami & Mingxuan Fu & Takashi Koretsune & Motoharu Kitatani & Ikhlas Muhammad & Daisuke Nishio-Hamane & Rieko Ishii & Fumiyuki Ishii & Ryotaro Arita & Satoru Na, 2021. "Anomalous transport due to Weyl fermions in the chiral antiferromagnets Mn3X, X = Sn, Ge," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Binoy K. Hazra & Banabir Pal & Jae-Chun Jeon & Robin R. Neumann & Börge Göbel & Bharat Grover & Hakan Deniz & Andriy Styervoyedov & Holger Meyerheim & Ingrid Mertig & See-Hun Yang & Stuart S. P. Parki, 2023. "Generation of out-of-plane polarized spin current by spin swapping," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    2. Zhenyi Zheng & Tao Zeng & Tieyang Zhao & Shu Shi & Lizhu Ren & Tongtong Zhang & Lanxin Jia & Youdi Gu & Rui Xiao & Hengan Zhou & Qihan Zhang & Jiaqi Lu & Guilei Wang & Chao Zhao & Huihui Li & Beng Kan, 2024. "Effective electrical manipulation of a topological antiferromagnet by orbital torques," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    3. Hang Xie & Xin Chen & Qi Zhang & Zhiqiang Mu & Xinhai Zhang & Binghai Yan & Yihong Wu, 2022. "Magnetization switching in polycrystalline Mn3Sn thin film induced by self-generated spin-polarized current," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Shuai Hu & Ding-Fu Shao & Huanglin Yang & Chang Pan & Zhenxiao Fu & Meng Tang & Yumeng Yang & Weijia Fan & Shiming Zhou & Evgeny Y. Tsymbal & Xuepeng Qiu, 2022. "Efficient perpendicular magnetization switching by a magnetic spin Hall effect in a noncollinear antiferromagnet," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    5. Kuan-Sen Lin & Giandomenico Palumbo & Zhaopeng Guo & Yoonseok Hwang & Jeremy Blackburn & Daniel P. Shoemaker & Fahad Mahmood & Zhijun Wang & Gregory A. Fiete & Benjamin J. Wieder & Barry Bradlyn, 2024. "Spin-resolved topology and partial axion angles in three-dimensional insulators," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    6. Yuki Hibino & Tomohiro Taniguchi & Kay Yakushiji & Akio Fukushima & Hitoshi Kubota & Shinji Yuasa, 2021. "Giant charge-to-spin conversion in ferromagnet via spin-orbit coupling," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    7. Cuimei Cao & Shiwei Chen & Rui-Chun Xiao & Zengtai Zhu & Guoqiang Yu & Yangping Wang & Xuepeng Qiu & Liang Liu & Tieyang Zhao & Ding-Fu Shao & Yang Xu & Jingsheng Chen & Qingfeng Zhan, 2023. "Anomalous spin current anisotropy in a noncollinear antiferromagnet," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    8. Yudi Dai & Junlin Xiong & Yanfeng Ge & Bin Cheng & Lizheng Wang & Pengfei Wang & Zenglin Liu & Shengnan Yan & Cuiwei Zhang & Xianghan Xu & Youguo Shi & Sang-Wook Cheong & Cong Xiao & Shengyuan A. Yang, 2024. "Interfacial magnetic spin Hall effect in van der Waals Fe3GeTe2/MoTe2 heterostructure," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    9. Wenbin Wu & Zeping Shi & Mykhaylo Ozerov & Yuhan Du & Yuxiang Wang & Xiao-Sheng Ni & Xianghao Meng & Xiangyu Jiang & Guangyi Wang & Congming Hao & Xinyi Wang & Pengcheng Zhang & Chunhui Pan & Haifeng , 2024. "The discovery of three-dimensional Van Hove singularity," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    10. Xiaokang Li & Jahyun Koo & Zengwei Zhu & Kamran Behnia & Binghai Yan, 2023. "Field-linear anomalous Hall effect and Berry curvature induced by spin chirality in the kagome antiferromagnet Mn3Sn," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    11. Yunfeng You & Hua Bai & Xiaoyu Feng & Xiaolong Fan & Lei Han & Xiaofeng Zhou & Yongjian Zhou & Ruiqi Zhang & Tongjin Chen & Feng Pan & Cheng Song, 2021. "Cluster magnetic octupole induced out-of-plane spin polarization in antiperovskite antiferromagnet," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    12. Sihao Deng & Olena Gomonay & Jie Chen & Gerda Fischer & Lunhua He & Cong Wang & Qingzhen Huang & Feiran Shen & Zhijian Tan & Rui Zhou & Ze Hu & Libor Šmejkal & Jairo Sinova & Wolfgang Wernsdorfer & Ch, 2024. "Phase transitions associated with magnetic-field induced topological orbital momenta in a non-collinear antiferromagnet," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    13. Shijie Xu & Bingqian Dai & Yuhao Jiang & Danrong Xiong & Houyi Cheng & Lixuan Tai & Meng Tang & Yadong Sun & Yu He & Baolin Yang & Yong Peng & Kang L. Wang & Weisheng Zhao, 2024. "Universal scaling law for chiral antiferromagnetism," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    14. Hidetoshi Masuda & Takeshi Seki & Jun-ichiro Ohe & Yoichi Nii & Hiroto Masuda & Koki Takanashi & Yoshinori Onose, 2024. "Room temperature chirality switching and detection in a helimagnetic MnAu2 thin film," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    15. Fen Xue & Shy-Jay Lin & Mingyuan Song & William Hwang & Christoph Klewe & Chien-Min Lee & Emrah Turgut & Padraic Shafer & Arturas Vailionis & Yen-Lin Huang & Wilman Tsai & Xinyu Bao & Shan X. Wang, 2023. "Field-free spin-orbit torque switching assisted by in-plane unconventional spin torque in ultrathin [Pt/Co]N," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    16. Lijun Zhu & Daniel C. Ralph, 2023. "Strong variation of spin-orbit torques with relative spin relaxation rates in ferrimagnets," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    17. Yong Xu & Fan Zhang & Albert Fert & Henri-Yves Jaffres & Yongshan Liu & Renyou Xu & Yuhao Jiang & Houyi Cheng & Weisheng Zhao, 2024. "Orbitronics: light-induced orbital currents in Ni studied by terahertz emission experiments," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    18. Xitong Xu & Jia-Xin Yin & Wenlong Ma & Hung-Ju Tien & Xiao-Bin Qiang & P. V. Sreenivasa Reddy & Huibin Zhou & Jie Shen & Hai-Zhou Lu & Tay-Rong Chang & Zhe Qu & Shuang Jia, 2022. "Topological charge-entropy scaling in kagome Chern magnet TbMn6Sn6," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    19. Pingfan Gu & Cong Wang & Dan Su & Zehao Dong & Qiuyuan Wang & Zheng Han & Kenji Watanabe & Takashi Taniguchi & Wei Ji & Young Sun & Yu Ye, 2023. "Multi-state data storage in a two-dimensional stripy antiferromagnet implemented by magnetoelectric effect," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    20. Yang Cao & Hao Ding & Yalu Zuo & Xiling Li & Yibing Zhao & Tong Li & Na Lei & Jiangwei Cao & Mingsu Si & Li Xi & Chenglong Jia & Desheng Xue & Dezheng Yang, 2024. "Acoustic spin rotation in heavy-metal-ferromagnet bilayers," Nature Communications, Nature, vol. 15(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26453-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.