IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-11949-5.html
   My bibliography  Save this article

Polar and phase domain walls with conducting interfacial states in a Weyl semimetal MoTe2

Author

Listed:
  • Fei-Ting Huang

    (Rutgers University)

  • Seong Joon Lim

    (Rutgers University)

  • Sobhit Singh

    (Rutgers University)

  • Jinwoong Kim

    (Rutgers University)

  • Lunyong Zhang

    (Pohang University of Science and Technology)

  • Jae-Wook Kim

    (Rutgers University)

  • Ming-Wen Chu

    (National Taiwan University)

  • Karin M. Rabe

    (Rutgers University)

  • David Vanderbilt

    (Rutgers University)

  • Sang-Wook Cheong

    (Rutgers University)

Abstract

Much of the dramatic growth in research on topological materials has focused on topologically protected surface states. While the domain walls of topological materials such as Weyl semimetals with broken inversion or time-reversal symmetry can provide a hunting ground for exploring topological interfacial states, such investigations have received little attention to date. Here, utilizing in-situ cryogenic transmission electron microscopy combined with first-principles calculations, we discover intriguing domain-wall structures in MoTe2, both between polar variants of the low-temperature(T) Weyl phase, and between this and the high-T higher-order topological phase. We demonstrate how polar domain walls can be manipulated with electron beams and show that phase domain walls tend to form superlattice-like structures along the c axis. Scanning tunneling microscopy indicates a possible signature of a conducting hinge state at phase domain walls. Our results open avenues for investigating topological interfacial states and unveiling multifunctional aspects of domain walls in topological materials.

Suggested Citation

  • Fei-Ting Huang & Seong Joon Lim & Sobhit Singh & Jinwoong Kim & Lunyong Zhang & Jae-Wook Kim & Ming-Wen Chu & Karin M. Rabe & David Vanderbilt & Sang-Wook Cheong, 2019. "Polar and phase domain walls with conducting interfacial states in a Weyl semimetal MoTe2," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-11949-5
    DOI: 10.1038/s41467-019-11949-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-11949-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-11949-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chun-Guang Chu & Jing-Jing Chen & An-Qi Wang & Zhen-Bing Tan & Cai-Zhen Li & Chuan Li & Alexander Brinkman & Peng-Zhan Xiang & Na Li & Zhen-Cun Pan & Hai-Zhou Lu & Dapeng Yu & Zhi-Min Liao, 2023. "Broad and colossal edge supercurrent in Dirac semimetal Cd3As2 Josephson junctions," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    2. Kuan-Sen Lin & Giandomenico Palumbo & Zhaopeng Guo & Yoonseok Hwang & Jeremy Blackburn & Daniel P. Shoemaker & Fahad Mahmood & Zhijun Wang & Gregory A. Fiete & Benjamin J. Wieder & Barry Bradlyn, 2024. "Spin-resolved topology and partial axion angles in three-dimensional insulators," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    3. Frank Schindler & Stepan S. Tsirkin & Titus Neupert & B. Andrei Bernevig & Benjamin J. Wieder, 2022. "Topological zero-dimensional defect and flux states in three-dimensional insulators," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    4. Myeongjin Jang & Sol Lee & Fernando Cantos-Prieto & Ivona Košić & Yue Li & Arthur R. C. McCray & Min-Hyoung Jung & Jun-Yeong Yoon & Loukya Boddapati & Francis Leonard Deepak & Hu Young Jeong & Charuda, 2024. "Direct observation of twisted stacking domains in the van der Waals magnet CrI3," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    5. James L. Hart & Lopa Bhatt & Yanbing Zhu & Myung-Geun Han & Elisabeth Bianco & Shunran Li & David J. Hynek & John A. Schneeloch & Yu Tao & Despina Louca & Peijun Guo & Yimei Zhu & Felipe Jornada & Eva, 2023. "Emergent layer stacking arrangements in c-axis confined MoTe2," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-11949-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.