IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v565y2019i7741d10.1038_s41586-018-0853-0.html
   My bibliography  Save this article

Magnetic and magnetic inverse spin Hall effects in a non-collinear antiferromagnet

Author

Listed:
  • Motoi Kimata

    (University of Tokyo
    CREST, Japan Science and Technology Agency (JST)
    Tohoku University)

  • Hua Chen

    (University of Texas at Austin
    Colorado State University)

  • Kouta Kondou

    (CREST, Japan Science and Technology Agency (JST)
    Center for Emergent Matter Science, RIKEN)

  • Satoshi Sugimoto

    (University of Tokyo
    National Institute for Materials Science)

  • Prasanta K. Muduli

    (University of Tokyo)

  • Muhammad Ikhlas

    (University of Tokyo)

  • Yasutomo Omori

    (University of Tokyo)

  • Takahiro Tomita

    (University of Tokyo
    CREST, Japan Science and Technology Agency (JST))

  • Allan. H. MacDonald

    (University of Texas at Austin)

  • Satoru Nakatsuji

    (University of Tokyo
    CREST, Japan Science and Technology Agency (JST))

  • Yoshichika Otani

    (University of Tokyo
    CREST, Japan Science and Technology Agency (JST)
    Center for Emergent Matter Science, RIKEN)

Abstract

The spin Hall effect (SHE)1–5 achieves coupling between charge currents and collective spin dynamics in magnetically ordered systems and is a key element of modern spintronics6–9. However, previous research has focused mainly on non-magnetic materials, so the magnetic contribution to the SHE is not well understood. Here we show that antiferromagnets have richer spin Hall properties than do non-magnetic materials. We find that in the non-collinear antiferromagnet10 Mn3Sn, the SHE has an anomalous sign change when its triangularly ordered moments switch orientation. We observe contributions to the SHE (which we call the magnetic SHE) and the inverse SHE (the magnetic inverse SHE) that are absent in non-magnetic materials and that can be dominant in some magnetic materials, including antiferromagnets. We attribute the dominance of this magnetic mechanism in Mn3Sn to the momentum-dependent spin splitting that is produced by non-collinear magnetic order. This discovery expands the horizons of antiferromagnet spintronics and spin–charge coupling mechanisms.

Suggested Citation

  • Motoi Kimata & Hua Chen & Kouta Kondou & Satoshi Sugimoto & Prasanta K. Muduli & Muhammad Ikhlas & Yasutomo Omori & Takahiro Tomita & Allan. H. MacDonald & Satoru Nakatsuji & Yoshichika Otani, 2019. "Magnetic and magnetic inverse spin Hall effects in a non-collinear antiferromagnet," Nature, Nature, vol. 565(7741), pages 627-630, January.
  • Handle: RePEc:nat:nature:v:565:y:2019:i:7741:d:10.1038_s41586-018-0853-0
    DOI: 10.1038/s41586-018-0853-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-018-0853-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-018-0853-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thiago Ferro & Luana Hildever & André José & José Holanda, 2024. "Unraveling oscillations at ferro(para)magnetic and non-collinear antiferromagnetic interfaces," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 97(9), pages 1-5, September.
    2. Rafael González-Hernández & Philipp Ritzinger & Karel Výborný & Jakub Železný & Aurélien Manchon, 2024. "Non-relativistic torque and Edelstein effect in non-collinear magnets," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Zhenyi Zheng & Tao Zeng & Tieyang Zhao & Shu Shi & Lizhu Ren & Tongtong Zhang & Lanxin Jia & Youdi Gu & Rui Xiao & Hengan Zhou & Qihan Zhang & Jiaqi Lu & Guilei Wang & Chao Zhao & Huihui Li & Beng Kan, 2024. "Effective electrical manipulation of a topological antiferromagnet by orbital torques," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    4. Yuki Hibino & Tomohiro Taniguchi & Kay Yakushiji & Akio Fukushima & Hitoshi Kubota & Shinji Yuasa, 2021. "Giant charge-to-spin conversion in ferromagnet via spin-orbit coupling," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    5. Kouta Kondou & Hua Chen & Takahiro Tomita & Muhammad Ikhlas & Tomoya Higo & Allan H. MacDonald & Satoru Nakatsuji & YoshiChika Otani, 2021. "Giant field-like torque by the out-of-plane magnetic spin Hall effect in a topological antiferromagnet," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    6. Kuan-Sen Lin & Giandomenico Palumbo & Zhaopeng Guo & Yoonseok Hwang & Jeremy Blackburn & Daniel P. Shoemaker & Fahad Mahmood & Zhijun Wang & Gregory A. Fiete & Benjamin J. Wieder & Barry Bradlyn, 2024. "Spin-resolved topology and partial axion angles in three-dimensional insulators," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    7. Cuimei Cao & Shiwei Chen & Rui-Chun Xiao & Zengtai Zhu & Guoqiang Yu & Yangping Wang & Xuepeng Qiu & Liang Liu & Tieyang Zhao & Ding-Fu Shao & Yang Xu & Jingsheng Chen & Qingfeng Zhan, 2023. "Anomalous spin current anisotropy in a noncollinear antiferromagnet," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    8. Hang Xie & Xin Chen & Qi Zhang & Zhiqiang Mu & Xinhai Zhang & Binghai Yan & Yihong Wu, 2022. "Magnetization switching in polycrystalline Mn3Sn thin film induced by self-generated spin-polarized current," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    9. Shuai Hu & Ding-Fu Shao & Huanglin Yang & Chang Pan & Zhenxiao Fu & Meng Tang & Yumeng Yang & Weijia Fan & Shiming Zhou & Evgeny Y. Tsymbal & Xuepeng Qiu, 2022. "Efficient perpendicular magnetization switching by a magnetic spin Hall effect in a noncollinear antiferromagnet," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    10. Yudi Dai & Junlin Xiong & Yanfeng Ge & Bin Cheng & Lizheng Wang & Pengfei Wang & Zenglin Liu & Shengnan Yan & Cuiwei Zhang & Xianghan Xu & Youguo Shi & Sang-Wook Cheong & Cong Xiao & Shengyuan A. Yang, 2024. "Interfacial magnetic spin Hall effect in van der Waals Fe3GeTe2/MoTe2 heterostructure," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    11. Binoy K. Hazra & Banabir Pal & Jae-Chun Jeon & Robin R. Neumann & Börge Göbel & Bharat Grover & Hakan Deniz & Andriy Styervoyedov & Holger Meyerheim & Ingrid Mertig & See-Hun Yang & Stuart S. P. Parki, 2023. "Generation of out-of-plane polarized spin current by spin swapping," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    12. Qingkai Meng & Jianting Dong & Pan Nie & Liangcai Xu & Jinhua Wang & Shan Jiang & Huakun Zuo & Jia Zhang & Xiaokang Li & Zengwei Zhu & Leon Balents & Kamran Behnia, 2024. "Magnetostriction, piezomagnetism and domain nucleation in a Kagome antiferromagnet," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:565:y:2019:i:7741:d:10.1038_s41586-018-0853-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.