IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v566y2019i7745d10.1038_s41586-019-0954-4.html
   My bibliography  Save this article

A complete catalogue of high-quality topological materials

Author

Listed:
  • M. G. Vergniory

    (Donostia International Physics Center
    Basque Foundation for Science
    University of the Basque Country UPV/EHU)

  • L. Elcoro

    (University of the Basque Country UPV/EHU)

  • Claudia Felser

    (Max Planck Institute for Chemical Physics of Solids)

  • Nicolas Regnault

    (PSL University, CNRS, Sorbonne Université, Université Paris Diderot, Sorbonne Paris Cité)

  • B. Andrei Bernevig

    (Princeton University
    Freie Universität Berlin
    Max Planck Institute of Microstructure Physics)

  • Zhijun Wang

    (Princeton University
    Chinese Academy of Sciences)

Abstract

Using a recently developed formalism called topological quantum chemistry, we perform a high-throughput search of ‘high-quality’ materials (for which the atomic positions and structure have been measured very accurately) in the Inorganic Crystal Structure Database in order to identify new topological phases. We develop codes to compute all characters of all symmetries of 26,938 stoichiometric materials, and find 3,307 topological insulators, 4,078 topological semimetals and no fragile phases. For these 7,385 materials we provide the electronic band structure, including some electronic properties (bandgap and number of electrons), symmetry indicators, and other topological information. Our results show that more than 27 per cent of all materials in nature are topological. We provide an open-source code that checks the topology of any material and allows other researchers to reproduce our results.

Suggested Citation

  • M. G. Vergniory & L. Elcoro & Claudia Felser & Nicolas Regnault & B. Andrei Bernevig & Zhijun Wang, 2019. "A complete catalogue of high-quality topological materials," Nature, Nature, vol. 566(7745), pages 480-485, February.
  • Handle: RePEc:nat:nature:v:566:y:2019:i:7745:d:10.1038_s41586-019-0954-4
    DOI: 10.1038/s41586-019-0954-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-019-0954-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-019-0954-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhiqiang Gao & Tian-Ran Wei & Tingting Deng & Pengfei Qiu & Wei Xu & Yuecun Wang & Lidong Chen & Xun Shi, 2022. "High-throughput screening of 2D van der Waals crystals with plastic deformability," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Biye Xie & Renwen Huang & Shiyin Jia & Zemeng Lin & Junzheng Hu & Yao Jiang & Shaojie Ma & Peng Zhan & Minghui Lu & Zhenlin Wang & Yanfeng Chen & Shuang Zhang, 2023. "Bulk-local-density-of-state correspondence in topological insulators," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    3. Haitao Yang & Yuhan Ye & Zhen Zhao & Jiali Liu & Xin-Wei Yi & Yuhang Zhang & Hongqin Xiao & Jinan Shi & Jing-Yang You & Zihao Huang & Bingjie Wang & Jing Wang & Hui Guo & Xiao Lin & Chengmin Shen & Wu, 2024. "Superconductivity and nematic order in a new titanium-based kagome metal CsTi3Bi5 without charge density wave order," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Chunyu Guo & A. Alexandradinata & Carsten Putzke & Amelia Estry & Teng Tu & Nitesh Kumar & Feng-Ren Fan & Shengnan Zhang & Quansheng Wu & Oleg V. Yazyev & Kent R. Shirer & Maja D. Bachmann & Hailin Pe, 2021. "Temperature dependence of quantum oscillations from non-parabolic dispersions," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    5. Tian Le & Ruihan Zhang & Changcun Li & Ruiyang Jiang & Haohao Sheng & Linfeng Tu & Xuewei Cao & Zhaozheng Lyu & Jie Shen & Guangtong Liu & Fucai Liu & Zhijun Wang & Li Lu & Fanming Qu, 2024. "Magnetic field filtering of the boundary supercurrent in unconventional metal NiTe2-based Josephson junctions," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    6. Kuan-Sen Lin & Giandomenico Palumbo & Zhaopeng Guo & Yoonseok Hwang & Jeremy Blackburn & Daniel P. Shoemaker & Fahad Mahmood & Zhijun Wang & Gregory A. Fiete & Benjamin J. Wieder & Barry Bradlyn, 2024. "Spin-resolved topology and partial axion angles in three-dimensional insulators," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    7. Frank Schindler & Stepan S. Tsirkin & Titus Neupert & B. Andrei Bernevig & Benjamin J. Wieder, 2022. "Topological zero-dimensional defect and flux states in three-dimensional insulators," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    8. Abdulhakim Bake & Qi Zhang & Cong Son Ho & Grace L. Causer & Weiyao Zhao & Zengji Yue & Alexander Nguyen & Golrokh Akhgar & Julie Karel & David Mitchell & Zeljko Pastuovic & Roger Lewis & Jared H. Col, 2023. "Top-down patterning of topological surface and edge states using a focused ion beam," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    9. Luis Elcoro & Benjamin J. Wieder & Zhida Song & Yuanfeng Xu & Barry Bradlyn & B. Andrei Bernevig, 2021. "Magnetic topological quantum chemistry," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    10. Wenxuan Zhao & Ming Yang & Runzhe Xu & Xian Du & Yidian Li & Kaiyi Zhai & Cheng Peng & Ding Pei & Han Gao & Yiwei Li & Lixuan Xu & Junfeng Han & Yuan Huang & Zhongkai Liu & Yugui Yao & Jincheng Zhuang, 2023. "Topological electronic structure and spin texture of quasi-one-dimensional higher-order topological insulator Bi4Br4," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    11. Ying-Jiun Chen & Jan-Philipp Hanke & Markus Hoffmann & Gustav Bihlmayer & Yuriy Mokrousov & Stefan Blügel & Claus M. Schneider & Christian Tusche, 2022. "Spanning Fermi arcs in a two-dimensional magnet," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    12. Jiabin Yu & Rui-Xing Zhang & Zhi-Da Song, 2021. "Dynamical symmetry indicators for Floquet crystals," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    13. Han Wu & Lei Chen & Paul Malinowski & Bo Gyu Jang & Qinwen Deng & Kirsty Scott & Jianwei Huang & Jacob P. C. Ruff & Yu He & Xiang Chen & Chaowei Hu & Ziqin Yue & Ji Seop Oh & Xiaokun Teng & Yucheng Gu, 2024. "Reversible non-volatile electronic switching in a near-room-temperature van der Waals ferromagnet," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    14. Delin Zhang & Wei Jiang & Hwanhui Yun & Onri Jay Benally & Thomas Peterson & Zach Cresswell & Yihong Fan & Yang Lv & Guichuan Yu & Javier Garcia Barriocanal & Przemyslaw Wojciech Swatek & K. Andre Mkh, 2023. "Robust negative longitudinal magnetoresistance and spin–orbit torque in sputtered Pt3Sn and Pt3SnxFe1-x topological semimetal," Nature Communications, Nature, vol. 14(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:566:y:2019:i:7745:d:10.1038_s41586-019-0954-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.