IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-43962-0.html
   My bibliography  Save this article

Emergent zero-field anomalous Hall effect in a reconstructed rutile antiferromagnetic metal

Author

Listed:
  • Meng Wang

    (RIKEN Center for Emergent Matter Science (CEMS))

  • Katsuhiro Tanaka

    (University of Tokyo)

  • Shiro Sakai

    (RIKEN Center for Emergent Matter Science (CEMS))

  • Ziqian Wang

    (RIKEN Center for Emergent Matter Science (CEMS))

  • Ke Deng

    (Southern University of Science and Technology (SUSTech)
    International Quantum Academy)

  • Yingjie Lyu

    (Tsinghua University)

  • Cong Li

    (Tsinghua University)

  • Di Tian

    (Tsinghua University)

  • Shengchun Shen

    (University of Science and Technology of China)

  • Naoki Ogawa

    (RIKEN Center for Emergent Matter Science (CEMS)
    University of Tokyo)

  • Naoya Kanazawa

    (The University of Tokyo)

  • Pu Yu

    (Tsinghua University)

  • Ryotaro Arita

    (RIKEN Center for Emergent Matter Science (CEMS)
    University of Tokyo)

  • Fumitaka Kagawa

    (RIKEN Center for Emergent Matter Science (CEMS)
    Tokyo Institute of Technology)

Abstract

The anomalous Hall effect (AHE) that emerges in antiferromagnetic metals shows intriguing physics and offers numerous potential applications. Magnets with a rutile crystal structure have recently received attention as a possible platform for a collinear-antiferromagnetism-induced AHE. RuO2 is a prototypical candidate material, however the AHE is prohibited at zero field by symmetry because of the high-symmetry [001] direction of the Néel vector at the ground state. Here, we show AHE at zero field in Cr-doped rutile, Ru0.8Cr0.2O2. The magnetization, transport and density functional theory calculations indicate that appropriate doping of Cr at Ru sites reconstructs the collinear antiferromagnetism in RuO2, resulting in a rotation of the Néel vector from [001] to [110] while maintaining a collinear antiferromagnetic state. The AHE with vanishing net moment in the Ru0.8Cr0.2O2 exhibits an orientation dependence consistent with the [110]-oriented Hall vector. These results demonstrate that material engineering by doping is a useful approach to manipulate AHE in antiferromagnetic metals.

Suggested Citation

  • Meng Wang & Katsuhiro Tanaka & Shiro Sakai & Ziqian Wang & Ke Deng & Yingjie Lyu & Cong Li & Di Tian & Shengchun Shen & Naoki Ogawa & Naoya Kanazawa & Pu Yu & Ryotaro Arita & Fumitaka Kagawa, 2023. "Emergent zero-field anomalous Hall effect in a reconstructed rutile antiferromagnetic metal," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43962-0
    DOI: 10.1038/s41467-023-43962-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-43962-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-43962-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yukako Fujishiro & Naoya Kanazawa & Ryosuke Kurihara & Hiroaki Ishizuka & Tomohiro Hori & Fehmi Sami Yasin & Xiuzhen Yu & Atsushi Tsukazaki & Masakazu Ichikawa & Masashi Kawasaki & Naoto Nagaosa & Mas, 2021. "Giant anomalous Hall effect from spin-chirality scattering in a chiral magnet," Nature Communications, Nature, vol. 12(1), pages 1-6, December.
    2. Satoru Nakatsuji & Naoki Kiyohara & Tomoya Higo, 2015. "Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature," Nature, Nature, vol. 527(7577), pages 212-215, November.
    3. Nirmal J. Ghimire & A. S. Botana & J. S. Jiang & Junjie Zhang & Y.-S. Chen & J. F. Mitchell, 2018. "Large anomalous Hall effect in the chiral-lattice antiferromagnet CoNb3S6," Nature Communications, Nature, vol. 9(1), pages 1-6, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Y. Hayashi & Y. Okamura & N. Kanazawa & T. Yu & T. Koretsune & R. Arita & A. Tsukazaki & M. Ichikawa & M. Kawasaki & Y. Tokura & Y. Takahashi, 2021. "Magneto-optical spectroscopy on Weyl nodes for anomalous and topological Hall effects in chiral MnGe," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    2. Shijie Xu & Bingqian Dai & Yuhao Jiang & Danrong Xiong & Houyi Cheng & Lixuan Tai & Meng Tang & Yadong Sun & Yu He & Baolin Yang & Yong Peng & Kang L. Wang & Weisheng Zhao, 2024. "Universal scaling law for chiral antiferromagnetism," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    3. Wenbin Wu & Zeping Shi & Mykhaylo Ozerov & Yuhan Du & Yuxiang Wang & Xiao-Sheng Ni & Xianghao Meng & Xiangyu Jiang & Guangyi Wang & Congming Hao & Xinyi Wang & Pengcheng Zhang & Chunhui Pan & Haifeng , 2024. "The discovery of three-dimensional Van Hove singularity," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Xiaokang Li & Jahyun Koo & Zengwei Zhu & Kamran Behnia & Binghai Yan, 2023. "Field-linear anomalous Hall effect and Berry curvature induced by spin chirality in the kagome antiferromagnet Mn3Sn," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    5. Pyeongjae Park & Woonghee Cho & Chaebin Kim & Yeochan An & Yoon-Gu Kang & Maxim Avdeev & Romain Sibille & Kazuki Iida & Ryoichi Kajimoto & Ki Hoon Lee & Woori Ju & En-Jin Cho & Han-Jin Noh & Myung Joo, 2023. "Tetrahedral triple-Q magnetic ordering and large spontaneous Hall conductivity in the metallic triangular antiferromagnet Co1/3TaS2," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. Binoy K. Hazra & Banabir Pal & Jae-Chun Jeon & Robin R. Neumann & Börge Göbel & Bharat Grover & Hakan Deniz & Andriy Styervoyedov & Holger Meyerheim & Ingrid Mertig & See-Hun Yang & Stuart S. P. Parki, 2023. "Generation of out-of-plane polarized spin current by spin swapping," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    7. Xitong Xu & Jia-Xin Yin & Wenlong Ma & Hung-Ju Tien & Xiao-Bin Qiang & P. V. Sreenivasa Reddy & Huibin Zhou & Jie Shen & Hai-Zhou Lu & Tay-Rong Chang & Zhe Qu & Shuang Jia, 2022. "Topological charge-entropy scaling in kagome Chern magnet TbMn6Sn6," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    8. Zhenyi Zheng & Tao Zeng & Tieyang Zhao & Shu Shi & Lizhu Ren & Tongtong Zhang & Lanxin Jia & Youdi Gu & Rui Xiao & Hengan Zhou & Qihan Zhang & Jiaqi Lu & Guilei Wang & Chao Zhao & Huihui Li & Beng Kan, 2024. "Effective electrical manipulation of a topological antiferromagnet by orbital torques," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    9. Rikizo Yano & Shota Nagasaka & Naoki Matsubara & Kazushige Saigusa & Tsuyoshi Tanda & Seiichiro Ito & Ai Yamakage & Yoshihiko Okamoto & Koshi Takenaka & Satoshi Kashiwaya, 2023. "Evidence of unconventional superconductivity on the surface of the nodal semimetal CaAg1−xPdxP," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    10. Li Huang & Xianghua Kong & Qi Zheng & Yuqing Xing & Hui Chen & Yan Li & Zhixin Hu & Shiyu Zhu & Jingsi Qiao & Yu-Yang Zhang & Haixia Cheng & Zhihai Cheng & Xianggang Qiu & Enke Liu & Hechang Lei & Xia, 2023. "Discovery and construction of surface kagome electronic states induced by p-d electronic hybridization in Co3Sn2S2," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    11. Kouta Kondou & Hua Chen & Takahiro Tomita & Muhammad Ikhlas & Tomoya Higo & Allan H. MacDonald & Satoru Nakatsuji & YoshiChika Otani, 2021. "Giant field-like torque by the out-of-plane magnetic spin Hall effect in a topological antiferromagnet," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    12. Cong Li & Jianfeng Zhang & Yang Wang & Hongxiong Liu & Qinda Guo & Emile Rienks & Wanyu Chen & Francois Bertran & Huancheng Yang & Dibya Phuyal & Hanna Fedderwitz & Balasubramanian Thiagarajan & Macie, 2023. "Emergence of Weyl fermions by ferrimagnetism in a noncentrosymmetric magnetic Weyl semimetal," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    13. Sihao Deng & Olena Gomonay & Jie Chen & Gerda Fischer & Lunhua He & Cong Wang & Qingzhen Huang & Feiran Shen & Zhijian Tan & Rui Zhou & Ze Hu & Libor Šmejkal & Jairo Sinova & Wolfgang Wernsdorfer & Ch, 2024. "Phase transitions associated with magnetic-field induced topological orbital momenta in a non-collinear antiferromagnet," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    14. M. Roppongi & K. Ishihara & Y. Tanaka & K. Ogawa & K. Okada & S. Liu & K. Mukasa & Y. Mizukami & Y. Uwatoko & R. Grasset & M. Konczykowski & B. R. Ortiz & S. D. Wilson & K. Hashimoto & T. Shibauchi, 2023. "Bulk evidence of anisotropic s-wave pairing with no sign change in the kagome superconductor CsV3Sb5," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    15. Hang Xie & Xin Chen & Qi Zhang & Zhiqiang Mu & Xinhai Zhang & Binghai Yan & Yihong Wu, 2022. "Magnetization switching in polycrystalline Mn3Sn thin film induced by self-generated spin-polarized current," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    16. Heda Zhang & Jahyun Koo & Chunqiang Xu & Milos Sretenovic & Binghai Yan & Xianglin Ke, 2022. "Exchange-biased topological transverse thermoelectric effects in a Kagome ferrimagnet," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    17. Shuai Hu & Ding-Fu Shao & Huanglin Yang & Chang Pan & Zhenxiao Fu & Meng Tang & Yumeng Yang & Weijia Fan & Shiming Zhou & Evgeny Y. Tsymbal & Xuepeng Qiu, 2022. "Efficient perpendicular magnetization switching by a magnetic spin Hall effect in a noncollinear antiferromagnet," Nature Communications, Nature, vol. 13(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43962-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.