IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-05756-7.html
   My bibliography  Save this article

Large anomalous Hall effect in the chiral-lattice antiferromagnet CoNb3S6

Author

Listed:
  • Nirmal J. Ghimire

    (Argonne National Laboratory)

  • A. S. Botana

    (Argonne National Laboratory)

  • J. S. Jiang

    (Argonne National Laboratory)

  • Junjie Zhang

    (Argonne National Laboratory)

  • Y.-S. Chen

    (The University of Chicago)

  • J. F. Mitchell

    (Argonne National Laboratory)

Abstract

An ordinary Hall effect in a conductor arises due to the Lorentz force acting on the charge carriers. In ferromagnets, an additional contribution to the Hall effect, the anomalous Hall effect (AHE), appears proportional to the magnetization. While the AHE is not seen in a collinear antiferromagnet, with zero net magnetization, recently it has been shown that an intrinsic AHE can be non-zero in non-collinear antiferromagnets as well as in topological materials hosting Weyl nodes near the Fermi energy. Here we report a large anomalous Hall effect with Hall conductivity of 27 Ω−1 cm−1 in a chiral-lattice antiferromagnet, CoNb3S6 consisting of a small intrinsic ferromagnetic component (≈0.0013 μB per Co) along c-axis. This small moment alone cannot explain the observed size of the AHE. We attribute the AHE to either formation of a complex magnetic texture or the combined effect of the small intrinsic moment on the electronic band structure.

Suggested Citation

  • Nirmal J. Ghimire & A. S. Botana & J. S. Jiang & Junjie Zhang & Y.-S. Chen & J. F. Mitchell, 2018. "Large anomalous Hall effect in the chiral-lattice antiferromagnet CoNb3S6," Nature Communications, Nature, vol. 9(1), pages 1-6, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-05756-7
    DOI: 10.1038/s41467-018-05756-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-05756-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-05756-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Meng Wang & Katsuhiro Tanaka & Shiro Sakai & Ziqian Wang & Ke Deng & Yingjie Lyu & Cong Li & Di Tian & Shengchun Shen & Naoki Ogawa & Naoya Kanazawa & Pu Yu & Ryotaro Arita & Fumitaka Kagawa, 2023. "Emergent zero-field anomalous Hall effect in a reconstructed rutile antiferromagnetic metal," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    2. Helena Reichlova & Rafael Lopes Seeger & Rafael González-Hernández & Ismaila Kounta & Richard Schlitz & Dominik Kriegner & Philipp Ritzinger & Michaela Lammel & Miina Leiviskä & Anna Birk Hellenes & K, 2024. "Observation of a spontaneous anomalous Hall response in the Mn5Si3 d-wave altermagnet candidate," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Pyeongjae Park & Woonghee Cho & Chaebin Kim & Yeochan An & Yoon-Gu Kang & Maxim Avdeev & Romain Sibille & Kazuki Iida & Ryoichi Kajimoto & Ki Hoon Lee & Woori Ju & En-Jin Cho & Han-Jin Noh & Myung Joo, 2023. "Tetrahedral triple-Q magnetic ordering and large spontaneous Hall conductivity in the metallic triangular antiferromagnet Co1/3TaS2," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-05756-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.