IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-49214-z.html
   My bibliography  Save this article

Full electrical manipulation of perpendicular exchange bias in ultrathin antiferromagnetic film with epitaxial strain

Author

Listed:
  • Jie Qi

    (Anhui University)

  • Yunchi Zhao

    (Chinese Academy of Sciences)

  • Yi Zhang

    (Chinese Academy of Sciences
    University of Science and Technology Beijing)

  • Guang Yang

    (Beihang University)

  • He Huang

    (University of Science and Technology Beijing)

  • Haochang Lyu

    (University of Science and Technology Beijing)

  • Bokai Shao

    (University of Science and Technology Beijing)

  • Jingyan Zhang

    (University of Science and Technology Beijing)

  • Jialiang Li

    (Spallation Neutron Source Science Center)

  • Tao Zhu

    (Chinese Academy of Sciences
    Spallation Neutron Source Science Center)

  • Guoqiang Yu

    (Chinese Academy of Sciences)

  • Hongxiang Wei

    (Chinese Academy of Sciences)

  • Shiming Zhou

    (Anhui University)

  • Baogen Shen

    (Anhui University)

  • Shouguo Wang

    (Anhui University)

Abstract

Achieving effective manipulation of perpendicular exchange bias effect remains an intricate endeavor, yet it stands a significance for the evolution of ultra-high capacity and energy-efficient magnetic memory and logic devices. A persistent impediment to its practical applications is the reliance on external magnetic fields during the current-induced switching of exchange bias in perpendicularly magnetized structures. This study elucidates the achievement of a full electrical manipulation of the perpendicular exchange bias in the multilayers with an ultrathin antiferromagnetic layer. Owing to the anisotropic epitaxial strain in the 2-nm-thick IrMn3 layer, the considerable exchange bias effect is clearly achieved at room temperature. Concomitantly, a specific global uncompensated magnetization manifests in the IrMn3 layer, facilitating the switching of the irreversible portion of the uncompensated magnetization. Consequently, the perpendicular exchange bias can be manipulated by only applying pulsed current, notably independent of the presence of any external magnetic fields.

Suggested Citation

  • Jie Qi & Yunchi Zhao & Yi Zhang & Guang Yang & He Huang & Haochang Lyu & Bokai Shao & Jingyan Zhang & Jialiang Li & Tao Zhu & Guoqiang Yu & Hongxiang Wei & Shiming Zhou & Baogen Shen & Shouguo Wang, 2024. "Full electrical manipulation of perpendicular exchange bias in ultrathin antiferromagnetic film with epitaxial strain," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49214-z
    DOI: 10.1038/s41467-024-49214-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-49214-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-49214-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jaimin Kang & Jeongchun Ryu & Jong-Guk Choi & Taekhyeon Lee & Jaehyeon Park & Soogil Lee & Hanhwi Jang & Yeon Sik Jung & Kab-Jin Kim & Byong-Guk Park, 2021. "Current-induced manipulation of exchange bias in IrMn/NiFe bilayer structures," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    2. Sevdenur Arpaci & Victor Lopez-Dominguez & Jiacheng Shi & Luis Sánchez-Tejerina & Francesca Garesci & Chulin Wang & Xueting Yan & Vinod K. Sangwan & Matthew A. Grayson & Mark C. Hersam & Giovanni Fino, 2021. "Observation of current-induced switching in non-collinear antiferromagnetic IrMn3 by differential voltage measurements," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    3. Satoru Nakatsuji & Naoki Kiyohara & Tomoya Higo, 2015. "Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature," Nature, Nature, vol. 527(7577), pages 212-215, November.
    4. Xianzhe Chen & Tomoya Higo & Katsuhiro Tanaka & Takuya Nomoto & Hanshen Tsai & Hiroshi Idzuchi & Masanobu Shiga & Shoya Sakamoto & Ryoya Ando & Hidetoshi Kosaki & Takumi Matsuo & Daisuke Nishio-Hamane, 2023. "Octupole-driven magnetoresistance in an antiferromagnetic tunnel junction," Nature, Nature, vol. 613(7944), pages 490-495, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Han Yan & Hongye Mao & Peixin Qin & Jinhua Wang & Haidong Liang & Xiaorong Zhou & Xiaoning Wang & Hongyu Chen & Ziang Meng & Li Liu & Guojian Zhao & Zhiyuan Duan & Zengwei Zhu & Bin Fang & Zhongming Z, 2024. "An antiferromagnetic spin phase change memory," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    2. Zhenyi Zheng & Tao Zeng & Tieyang Zhao & Shu Shi & Lizhu Ren & Tongtong Zhang & Lanxin Jia & Youdi Gu & Rui Xiao & Hengan Zhou & Qihan Zhang & Jiaqi Lu & Guilei Wang & Chao Zhao & Huihui Li & Beng Kan, 2024. "Effective electrical manipulation of a topological antiferromagnet by orbital torques," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    3. Chung-Tao Chou & Supriya Ghosh & Brooke C. McGoldrick & Thanh Nguyen & Gautam Gurung & Evgeny Y. Tsymbal & Mingda Li & K. Andre Mkhoyan & Luqiao Liu, 2024. "Large Spin Polarization from symmetry-breaking Antiferromagnets in Antiferromagnetic Tunnel Junctions," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    4. Rafael González-Hernández & Philipp Ritzinger & Karel Výborný & Jakub Železný & Aurélien Manchon, 2024. "Non-relativistic torque and Edelstein effect in non-collinear magnets," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Wenbin Wu & Zeping Shi & Mykhaylo Ozerov & Yuhan Du & Yuxiang Wang & Xiao-Sheng Ni & Xianghao Meng & Xiangyu Jiang & Guangyi Wang & Congming Hao & Xinyi Wang & Pengcheng Zhang & Chunhui Pan & Haifeng , 2024. "The discovery of three-dimensional Van Hove singularity," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    6. Sisheng Duan & Jing-Yang You & Zhihao Cai & Jian Gou & Dong Li & Yu Li Huang & Xiaojiang Yu & Siew Lang Teo & Shuo Sun & Yihe Wang & Ming Lin & Chun Zhang & Baojie Feng & Andrew T. S. Wee & Wei Chen, 2024. "Observation of kagome-like bands in two-dimensional semiconducting Cr8Se12," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    7. Hidetoshi Masuda & Takeshi Seki & Jun-ichiro Ohe & Yoichi Nii & Hiroto Masuda & Koki Takanashi & Yoshinori Onose, 2024. "Room temperature chirality switching and detection in a helimagnetic MnAu2 thin film," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    8. Xiaokang Li & Jahyun Koo & Zengwei Zhu & Kamran Behnia & Binghai Yan, 2023. "Field-linear anomalous Hall effect and Berry curvature induced by spin chirality in the kagome antiferromagnet Mn3Sn," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    9. Thiago Ferro & Luana Hildever & André José & José Holanda, 2024. "Unraveling oscillations at ferro(para)magnetic and non-collinear antiferromagnetic interfaces," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 97(9), pages 1-5, September.
    10. Binoy K. Hazra & Banabir Pal & Jae-Chun Jeon & Robin R. Neumann & Börge Göbel & Bharat Grover & Hakan Deniz & Andriy Styervoyedov & Holger Meyerheim & Ingrid Mertig & See-Hun Yang & Stuart S. P. Parki, 2023. "Generation of out-of-plane polarized spin current by spin swapping," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    11. Xitong Xu & Jia-Xin Yin & Wenlong Ma & Hung-Ju Tien & Xiao-Bin Qiang & P. V. Sreenivasa Reddy & Huibin Zhou & Jie Shen & Hai-Zhou Lu & Tay-Rong Chang & Zhe Qu & Shuang Jia, 2022. "Topological charge-entropy scaling in kagome Chern magnet TbMn6Sn6," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    12. Rikizo Yano & Shota Nagasaka & Naoki Matsubara & Kazushige Saigusa & Tsuyoshi Tanda & Seiichiro Ito & Ai Yamakage & Yoshihiko Okamoto & Koshi Takenaka & Satoshi Kashiwaya, 2023. "Evidence of unconventional superconductivity on the surface of the nodal semimetal CaAg1−xPdxP," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    13. Qingkai Meng & Jianting Dong & Pan Nie & Liangcai Xu & Jinhua Wang & Shan Jiang & Huakun Zuo & Jia Zhang & Xiaokang Li & Zengwei Zhu & Leon Balents & Kamran Behnia, 2024. "Magnetostriction, piezomagnetism and domain nucleation in a Kagome antiferromagnet," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    14. Meng Wang & Katsuhiro Tanaka & Shiro Sakai & Ziqian Wang & Ke Deng & Yingjie Lyu & Cong Li & Di Tian & Shengchun Shen & Naoki Ogawa & Naoya Kanazawa & Pu Yu & Ryotaro Arita & Fumitaka Kagawa, 2023. "Emergent zero-field anomalous Hall effect in a reconstructed rutile antiferromagnetic metal," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    15. Y. Hayashi & Y. Okamura & N. Kanazawa & T. Yu & T. Koretsune & R. Arita & A. Tsukazaki & M. Ichikawa & M. Kawasaki & Y. Tokura & Y. Takahashi, 2021. "Magneto-optical spectroscopy on Weyl nodes for anomalous and topological Hall effects in chiral MnGe," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    16. Mingxing Wu & Taishi Chen & Takuya Nomoto & Yaroslav Tserkovnyak & Hironari Isshiki & Yoshinobu Nakatani & Tomoya Higo & Takahiro Tomita & Kouta Kondou & Ryotaro Arita & Satoru Nakatsuji & Yoshichika , 2024. "Current-driven fast magnetic octupole domain-wall motion in noncollinear antiferromagnets," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    17. Li Huang & Xianghua Kong & Qi Zheng & Yuqing Xing & Hui Chen & Yan Li & Zhixin Hu & Shiyu Zhu & Jingsi Qiao & Yu-Yang Zhang & Haixia Cheng & Zhihai Cheng & Xianggang Qiu & Enke Liu & Hechang Lei & Xia, 2023. "Discovery and construction of surface kagome electronic states induced by p-d electronic hybridization in Co3Sn2S2," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    18. Kouta Kondou & Hua Chen & Takahiro Tomita & Muhammad Ikhlas & Tomoya Higo & Allan H. MacDonald & Satoru Nakatsuji & YoshiChika Otani, 2021. "Giant field-like torque by the out-of-plane magnetic spin Hall effect in a topological antiferromagnet," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    19. Cong Li & Jianfeng Zhang & Yang Wang & Hongxiong Liu & Qinda Guo & Emile Rienks & Wanyu Chen & Francois Bertran & Huancheng Yang & Dibya Phuyal & Hanna Fedderwitz & Balasubramanian Thiagarajan & Macie, 2023. "Emergence of Weyl fermions by ferrimagnetism in a noncentrosymmetric magnetic Weyl semimetal," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    20. Sihao Deng & Olena Gomonay & Jie Chen & Gerda Fischer & Lunhua He & Cong Wang & Qingzhen Huang & Feiran Shen & Zhijian Tan & Rui Zhou & Ze Hu & Libor Šmejkal & Jairo Sinova & Wolfgang Wernsdorfer & Ch, 2024. "Phase transitions associated with magnetic-field induced topological orbital momenta in a non-collinear antiferromagnet," Nature Communications, Nature, vol. 15(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49214-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.