IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-43928-2.html
   My bibliography  Save this article

Resonant exciton transfer in mixed-dimensional heterostructures for overcoming dimensional restrictions in optical processes

Author

Listed:
  • N. Fang

    (RIKEN Cluster for Pioneering Research)

  • Y. R. Chang

    (RIKEN Cluster for Pioneering Research)

  • D. Yamashita

    (RIKEN Center for Advanced Photonics
    National Institute of Advanced Industrial Science and Technology (AIST))

  • S. Fujii

    (RIKEN Center for Advanced Photonics
    Keio University)

  • M. Maruyama

    (University of Tsukuba)

  • Y. Gao

    (University of Tsukuba)

  • C. F. Fong

    (RIKEN Cluster for Pioneering Research)

  • K. Otsuka

    (RIKEN Cluster for Pioneering Research
    The University of Tokyo)

  • K. Nagashio

    (The University of Tokyo)

  • S. Okada

    (University of Tsukuba)

  • Y. K. Kato

    (RIKEN Cluster for Pioneering Research
    RIKEN Center for Advanced Photonics)

Abstract

Nanomaterials exhibit unique optical phenomena, in particular excitonic quantum processes occurring at room temperature. The low dimensionality, however, imposes strict requirements for conventional optical excitation, and an approach for bypassing such restrictions is desirable. Here we report on exciton transfer in carbon-nanotube/tungsten-diselenide heterostructures, where band alignment can be systematically varied. The mixed-dimensional heterostructures display a pronounced exciton reservoir effect where the longer-lifetime excitons within the two-dimensional semiconductor are funneled into carbon nanotubes through diffusion. This new excitation pathway presents several advantages, including larger absorption areas, broadband spectral response, and polarization-independent efficiency. When band alignment is resonant, we observe substantially more efficient excitation via tungsten diselenide compared to direct excitation of the nanotube. We further demonstrate simultaneous bright emission from an array of carbon nanotubes with varied chiralities and orientations. Our findings show the potential of mixed-dimensional heterostructures and band alignment engineering for energy harvesting and quantum applications through exciton manipulation.

Suggested Citation

  • N. Fang & Y. R. Chang & D. Yamashita & S. Fujii & M. Maruyama & Y. Gao & C. F. Fong & K. Otsuka & K. Nagashio & S. Okada & Y. K. Kato, 2023. "Resonant exciton transfer in mixed-dimensional heterostructures for overcoming dimensional restrictions in optical processes," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43928-2
    DOI: 10.1038/s41467-023-43928-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-43928-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-43928-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Keigo Otsuka & Nan Fang & Daiki Yamashita & Takashi Taniguchi & Kenji Watanabe & Yuichiro K. Kato, 2021. "Deterministic transfer of optical-quality carbon nanotubes for atomically defined technology," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    2. Marc Achermann & Melissa A. Petruska & Simon Kos & Darryl L. Smith & Daniel D. Koleske & Victor I. Klimov, 2004. "Energy-transfer pumping of semiconductor nanocrystals using an epitaxial quantum well," Nature, Nature, vol. 429(6992), pages 642-646, June.
    3. Wenzhuo Wu & Lei Wang & Yilei Li & Fan Zhang & Long Lin & Simiao Niu & Daniel Chenet & Xian Zhang & Yufeng Hao & Tony F. Heinz & James Hone & Zhong Lin Wang, 2014. "Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics," Nature, Nature, vol. 514(7523), pages 470-474, October.
    4. Xueqian Sun & Yi Zhu & Hao Qin & Boqing Liu & Yilin Tang & Tieyu Lü & Sharidya Rahman & Tanju Yildirim & Yuerui Lu, 2022. "Enhanced interactions of interlayer excitons in free-standing heterobilayers," Nature, Nature, vol. 610(7932), pages 478-484, October.
    5. Daichi Kozawa & Rajeev Kumar & Alexandra Carvalho & Kiran Kumar Amara & Weijie Zhao & Shunfeng Wang & Minglin Toh & Ricardo M. Ribeiro & A. H. Castro Neto & Kazunari Matsuda & Goki Eda, 2014. "Photocarrier relaxation pathway in two-dimensional semiconducting transition metal dichalcogenides," Nature Communications, Nature, vol. 5(1), pages 1-7, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. N. Fang & Y. R. Chang & S. Fujii & D. Yamashita & M. Maruyama & Y. Gao & C. F. Fong & D. Kozawa & K. Otsuka & K. Nagashio & S. Okada & Y. K. Kato, 2024. "Room-temperature quantum emission from interface excitons in mixed-dimensional heterostructures," Nature Communications, Nature, vol. 15(1), pages 1-8, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. N. Fang & Y. R. Chang & S. Fujii & D. Yamashita & M. Maruyama & Y. Gao & C. F. Fong & D. Kozawa & K. Otsuka & K. Nagashio & S. Okada & Y. K. Kato, 2024. "Room-temperature quantum emission from interface excitons in mixed-dimensional heterostructures," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    2. Rui Ge & Qiuhong Yu & Feng Zhou & Shuhai Liu & Yong Qin, 2023. "Dual-modal piezotronic transistor for highly sensitive vertical force sensing and lateral strain sensing," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Yan Sun & Shuting Xu & Zheqi Xu & Jiamin Tian & Mengmeng Bai & Zhiying Qi & Yue Niu & Hein Htet Aung & Xiaolu Xiong & Junfeng Han & Cuicui Lu & Jianbo Yin & Sheng Wang & Qing Chen & Reshef Tenne & All, 2022. "Mesoscopic sliding ferroelectricity enabled photovoltaic random access memory for material-level artificial vision system," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    4. Riya Sebait & Roberto Rosati & Seok Joon Yun & Krishna P. Dhakal & Samuel Brem & Chandan Biswas & Alexander Puretzky & Ermin Malic & Young Hee Lee, 2023. "Sequential order dependent dark-exciton modulation in bi-layered TMD heterostructure," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. Suman Chatterjee & Medha Dandu & Pushkar Dasika & Rabindra Biswas & Sarthak Das & Kenji Watanabe & Takashi Taniguchi & Varun Raghunathan & Kausik Majumdar, 2023. "Harmonic to anharmonic tuning of moiré potential leading to unconventional Stark effect and giant dipolar repulsion in WS2/WSe2 heterobilayer," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    6. Quan Wang & Kyung-Bum Kim & Sang Bum Woo & Yoo Seob Song & Tae Hyun Sung, 2021. "A Flexible Piezoelectric Energy Harvester-Based Single-Layer WS 2 Nanometer 2D Material for Self-Powered Sensors," Energies, MDPI, vol. 14(8), pages 1-14, April.
    7. Li, Yong & Yang, Jie & Song, Jian, 2016. "Structural model, size effect and nano-energy system design for more sustainable energy of solid state automotive battery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 685-697.
    8. Boqing Liu & Tanju Yildirim & Tieyu Lü & Elena Blundo & Li Wang & Lixue Jiang & Hongshuai Zou & Lijun Zhang & Huijun Zhao & Zongyou Yin & Fangbao Tian & Antonio Polimeni & Yuerui Lu, 2023. "Variant Plateau’s law in atomically thin transition metal dichalcogenide dome networks," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    9. Daniel Fernandez & Ann Sebastian & Patience Raby & Moneeb Genedy & Ethan C. Ahn & Mahmoud M. Reda Taha & Samer Dessouky & Sara Ahmed, 2023. "Roadway Embedded Smart Illumination Charging System for Electric Vehicles," Energies, MDPI, vol. 16(2), pages 1-21, January.
    10. Zihan Liang & Xin Zhou & Le Zhang & Xiang-Long Yu & Yan Lv & Xuefen Song & Yongheng Zhou & Han Wang & Shuo Wang & Taihong Wang & Perry Ping Shum & Qian He & Yanjun Liu & Chao Zhu & Lin Wang & Xiaolong, 2023. "Strong bulk photovoltaic effect in engineered edge-embedded van der Waals structures," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    11. Qiuhong Yu & Rui Ge & Juan Wen & Qi Xu & Zhouguang Lu & Shuhai Liu & Yong Qin, 2024. "Electric pulse-tuned piezotronic effect for interface engineering," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    12. Yuxin Jiang & Ken Li & Sikpaam Issaka Alhassan & Yiyun Cao & Haoyu Deng & Shan Tan & Haiying Wang & Chongjian Tang & Liyuan Chai, 2022. "Spinel LiMn 2 O 4 as a Capacitive Deionization Electrode Material with High Desalination Capacity: Experiment and Simulation," IJERPH, MDPI, vol. 20(1), pages 1-13, December.
    13. Kai-Qiang Lin & Jonas D. Ziegler & Marina A. Semina & Javid V. Mamedov & Kenji Watanabe & Takashi Taniguchi & Sebastian Bange & Alexey Chernikov & Mikhail M. Glazov & John M. Lupton, 2022. "High-lying valley-polarized trions in 2D semiconductors," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    14. Giacomo Clementi & Francesco Cottone & Alessandro Di Michele & Luca Gammaitoni & Maurizio Mattarelli & Gabriele Perna & Miquel López-Suárez & Salvatore Baglio & Carlo Trigona & Igor Neri, 2022. "Review on Innovative Piezoelectric Materials for Mechanical Energy Harvesting," Energies, MDPI, vol. 15(17), pages 1-44, August.
    15. Ke Ren & Fangjie Ding & Lijun Zhang & Fengping Peng & Jianzhong Guo & Chunzheng Wu, 2024. "Enhanced H 2 Generation via Piezoelectric Reforming of Waste Sugars and Fruits Using Au-Decorated g-C 3 N 4," Sustainability, MDPI, vol. 16(10), pages 1-13, May.
    16. Singh, Vishal & Meena, Deshraj & Sharma, Himani & Trivedi, Ashutosh & Singh, Bharti, 2022. "Investigating the role of chalcogen atom in the piezoelectric performance of PVDF/TMDCs based flexible nanogenerator," Energy, Elsevier, vol. 239(PB).
    17. Qiaoling Lin & Hanlin Fang & Alexei Kalaboukhov & Yuanda Liu & Yi Zhang & Moritz Fischer & Juntao Li & Joakim Hagel & Samuel Brem & Ermin Malic & Nicolas Stenger & Zhipei Sun & Martijn Wubs & Sanshui , 2024. "Moiré-engineered light-matter interactions in MoS2/WSe2 heterobilayers at room temperature," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    18. Yi Hu & Lukas Rogée & Weizhen Wang & Lyuchao Zhuang & Fangyi Shi & Hui Dong & Songhua Cai & Beng Kang Tay & Shu Ping Lau, 2023. "Extendable piezo/ferroelectricity in nonstoichiometric 2D transition metal dichalcogenides," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43928-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.