IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-57068-2.html
   My bibliography  Save this article

Two dimensional MoS2 accelerates mechanically controlled polymerization and remodeling of hydrogel

Author

Listed:
  • Jian Wang

    (Soochow University)

  • Zhijun Han

    (Soochow University)

  • Longfei Zhang

    (Soochow University)

  • Ran Ding

    (Soochow University)

  • Chengqiang Ding

    (Soochow University)

  • Kai Chen

    (Soochow University)

  • Zhao Wang

    (Soochow University
    Soochow University
    Soochow University
    Soochow University)

Abstract

Self-remodeling material can change their physical properties based on mechanical environment. Recently, mechanically controlled polymerization using mechanoredox catalyst enabled composite materials to undergo a permanent structural change, thereby enhancing their mechanical strength. However, a significant delay in material’s response was observed due to the sluggish activation of the bulk catalyst for polymerization. Herein, we report a fast, mechanically controlled radical polymerization of water soluble monomers using 2D MoS2 as the mechanoredox catalyst, studied under various mechanical stimuli, including ultrasound, ball milling and low frequency vibrations. Our strategy enables complete polymerization within several minutes of work. This accelerated process can be utilized to create composite hydrogels with the ability to alter their mechanical and electrical properties in response to mechanical stimuli. This strategy has potential for applications in smart materials such as hydrogel sensors, artificial muscles, and implantable biomaterials.

Suggested Citation

  • Jian Wang & Zhijun Han & Longfei Zhang & Ran Ding & Chengqiang Ding & Kai Chen & Zhao Wang, 2025. "Two dimensional MoS2 accelerates mechanically controlled polymerization and remodeling of hydrogel," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57068-2
    DOI: 10.1038/s41467-025-57068-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-57068-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-57068-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kuan Zhang & Yu Zhou & Junsheng Zhang & Qing Liu & Christina Hanenberg & Ahmed Mourran & Xin Wang & Xiang Gao & Yi Cao & Andreas Herrmann & Lifei Zheng, 2024. "Shape morphing of hydrogels by harnessing enzyme enabled mechanoresponse," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Jorge Ayarza & Jun Wang & Hojin Kim & Pin-Ruei Huang & Britteny Cassaidy & Gangbin Yan & Chong Liu & Heinrich M. Jaeger & Stuart J. Rowan & Aaron P. Esser-Kahn, 2023. "Bioinspired mechanical mineralization of organogels," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    3. Yunlei Zhang & Weiyi Zhao & Shuanhong Ma & Hui Liu & Xingwei Wang & Xiaoduo Zhao & Bo Yu & Meirong Cai & Feng Zhou, 2022. "Modulus adaptive lubricating prototype inspired by instant muscle hardening mechanism of catfish skin," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Wenzhuo Wu & Lei Wang & Yilei Li & Fan Zhang & Long Lin & Simiao Niu & Daniel Chenet & Xian Zhang & Yufeng Hao & Tony F. Heinz & James Hone & Zhong Lin Wang, 2014. "Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics," Nature, Nature, vol. 514(7523), pages 470-474, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shuanhong Ma & Lunkun Liu & Weiyi Zhao & Renjie Li & Xiaoduo Zhao & Yunlei Zhang & Bo Yu & Ying Liu & Feng Zhou, 2025. "Earthworm inspired lubricant self-pumping hydrogel with sustained lubricity at high loading," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    2. Li, Yong & Yang, Jie & Song, Jian, 2016. "Structural model, size effect and nano-energy system design for more sustainable energy of solid state automotive battery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 685-697.
    3. Boqing Liu & Tanju Yildirim & Tieyu Lü & Elena Blundo & Li Wang & Lixue Jiang & Hongshuai Zou & Lijun Zhang & Huijun Zhao & Zongyou Yin & Fangbao Tian & Antonio Polimeni & Yuerui Lu, 2023. "Variant Plateau’s law in atomically thin transition metal dichalcogenide dome networks," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Daniel Fernandez & Ann Sebastian & Patience Raby & Moneeb Genedy & Ethan C. Ahn & Mahmoud M. Reda Taha & Samer Dessouky & Sara Ahmed, 2023. "Roadway Embedded Smart Illumination Charging System for Electric Vehicles," Energies, MDPI, vol. 16(2), pages 1-21, January.
    5. Zihan Liang & Xin Zhou & Le Zhang & Xiang-Long Yu & Yan Lv & Xuefen Song & Yongheng Zhou & Han Wang & Shuo Wang & Taihong Wang & Perry Ping Shum & Qian He & Yanjun Liu & Chao Zhu & Lin Wang & Xiaolong, 2023. "Strong bulk photovoltaic effect in engineered edge-embedded van der Waals structures," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. Qiuhong Yu & Rui Ge & Juan Wen & Qi Xu & Zhouguang Lu & Shuhai Liu & Yong Qin, 2024. "Electric pulse-tuned piezotronic effect for interface engineering," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    7. Rui Ge & Qiuhong Yu & Feng Zhou & Shuhai Liu & Yong Qin, 2023. "Dual-modal piezotronic transistor for highly sensitive vertical force sensing and lateral strain sensing," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    8. N. Fang & Y. R. Chang & D. Yamashita & S. Fujii & M. Maruyama & Y. Gao & C. F. Fong & K. Otsuka & K. Nagashio & S. Okada & Y. K. Kato, 2023. "Resonant exciton transfer in mixed-dimensional heterostructures for overcoming dimensional restrictions in optical processes," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    9. Ziyi Han & Shengqiang Wu & Chun Huang & Fengyuan Xuan & Xiaocang Han & Yinfeng Long & Qing Zhang & Junxian Li & Yuan Meng & Lin Wang & Jiahuan Zhou & Wenping Hu & Jingsi Qiao & Dechao Geng & Xiaoxu Zh, 2024. "Atomically engineering interlayer symmetry operations of two-dimensional crystals," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    10. Yan Sun & Shuting Xu & Zheqi Xu & Jiamin Tian & Mengmeng Bai & Zhiying Qi & Yue Niu & Hein Htet Aung & Xiaolu Xiong & Junfeng Han & Cuicui Lu & Jianbo Yin & Sheng Wang & Qing Chen & Reshef Tenne & All, 2022. "Mesoscopic sliding ferroelectricity enabled photovoltaic random access memory for material-level artificial vision system," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    11. Shanming Hu & Yuhuang Fang & Chen Liang & Matti Turunen & Olli Ikkala & Hang Zhang, 2023. "Thermally trainable dual network hydrogels," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    12. Sk Shamim Hasan Abir & Shyam Sharma & Prince Sharma & Surya Karla & Ganesh Balasubramanian & Johnson Samuel & Nikhil Koratkar, 2024. "Piezoelectricity in chalcogenide perovskites," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    13. Quan Wang & Kyung-Bum Kim & Sang Bum Woo & Yoo Seob Song & Tae Hyun Sung, 2021. "A Flexible Piezoelectric Energy Harvester-Based Single-Layer WS 2 Nanometer 2D Material for Self-Powered Sensors," Energies, MDPI, vol. 14(8), pages 1-14, April.
    14. Taehun Kim & Hyungseok Yong & Banseok Kim & Dongseob Kim & Dukhyun Choi & Yong Tae Park & Sangmin Lee, 2018. "Energy-loss return gate via liquid dielectric polarization," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    15. Yuxin Jiang & Ken Li & Sikpaam Issaka Alhassan & Yiyun Cao & Haoyu Deng & Shan Tan & Haiying Wang & Chongjian Tang & Liyuan Chai, 2022. "Spinel LiMn 2 O 4 as a Capacitive Deionization Electrode Material with High Desalination Capacity: Experiment and Simulation," IJERPH, MDPI, vol. 20(1), pages 1-13, December.
    16. Giacomo Clementi & Francesco Cottone & Alessandro Di Michele & Luca Gammaitoni & Maurizio Mattarelli & Gabriele Perna & Miquel López-Suárez & Salvatore Baglio & Carlo Trigona & Igor Neri, 2022. "Review on Innovative Piezoelectric Materials for Mechanical Energy Harvesting," Energies, MDPI, vol. 15(17), pages 1-44, August.
    17. Ke Ren & Fangjie Ding & Lijun Zhang & Fengping Peng & Jianzhong Guo & Chunzheng Wu, 2024. "Enhanced H 2 Generation via Piezoelectric Reforming of Waste Sugars and Fruits Using Au-Decorated g-C 3 N 4," Sustainability, MDPI, vol. 16(10), pages 1-13, May.
    18. Singh, Vishal & Meena, Deshraj & Sharma, Himani & Trivedi, Ashutosh & Singh, Bharti, 2022. "Investigating the role of chalcogen atom in the piezoelectric performance of PVDF/TMDCs based flexible nanogenerator," Energy, Elsevier, vol. 239(PB).
    19. Yi Hu & Lukas Rogée & Weizhen Wang & Lyuchao Zhuang & Fangyi Shi & Hui Dong & Songhua Cai & Beng Kang Tay & Shu Ping Lau, 2023. "Extendable piezo/ferroelectricity in nonstoichiometric 2D transition metal dichalcogenides," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57068-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.