IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v610y2022i7932d10.1038_s41586-022-05193-z.html
   My bibliography  Save this article

Enhanced interactions of interlayer excitons in free-standing heterobilayers

Author

Listed:
  • Xueqian Sun

    (the Australian National University)

  • Yi Zhu

    (the Australian National University)

  • Hao Qin

    (the Australian National University)

  • Boqing Liu

    (the Australian National University)

  • Yilin Tang

    (the Australian National University)

  • Tieyu Lü

    (Xiamen University)

  • Sharidya Rahman

    (the Australian National University)

  • Tanju Yildirim

    (National Institute for Materials Science (NIMS))

  • Yuerui Lu

    (the Australian National University
    the Australian National University)

Abstract

Strong, long-range dipole–dipole interactions between interlayer excitons (IXs) can lead to new multiparticle correlation regimes1,2, which drive the system into distinct quantum and classical phases2–5, including dipolar liquids, crystals and superfluids. Both repulsive and attractive dipole–dipole interactions have been theoretically predicted between IXs in a semiconductor bilayer2,6–8, but only repulsive interactions have been reported experimentally so far3,9–16. This study investigated free-standing, twisted (51°, 53°, 45°) tungsten diselenide/tungsten disulfide (WSe2/WS2) heterobilayers, in which we observed a transition in the nature of dipolar interactions among IXs, from repulsive to attractive. This was caused by quantum-exchange-correlation effects, leading to the appearance of a robust interlayer biexciton phase (formed by two IXs), which has been theoretically predicted6–8 but never observed before in experiments. The reduced dielectric screening in a free-standing heterobilayer not only resulted in a much higher formation efficiency of IXs, but also led to strongly enhanced dipole–dipole interactions, which enabled us to observe the many-body correlations of pristine IXs at the two-dimensional quantum limit. In addition, we firstly observed several emission peaks from moiré-trapped IXs at room temperature in a well-aligned, free-standing WSe2/WS2 heterobilayer. Our findings open avenues for exploring new quantum phases with potential for applications in non-linear optics.

Suggested Citation

  • Xueqian Sun & Yi Zhu & Hao Qin & Boqing Liu & Yilin Tang & Tieyu Lü & Sharidya Rahman & Tanju Yildirim & Yuerui Lu, 2022. "Enhanced interactions of interlayer excitons in free-standing heterobilayers," Nature, Nature, vol. 610(7932), pages 478-484, October.
  • Handle: RePEc:nat:nature:v:610:y:2022:i:7932:d:10.1038_s41586-022-05193-z
    DOI: 10.1038/s41586-022-05193-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-022-05193-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-022-05193-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Suman Chatterjee & Medha Dandu & Pushkar Dasika & Rabindra Biswas & Sarthak Das & Kenji Watanabe & Takashi Taniguchi & Varun Raghunathan & Kausik Majumdar, 2023. "Harmonic to anharmonic tuning of moiré potential leading to unconventional Stark effect and giant dipolar repulsion in WS2/WSe2 heterobilayer," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    2. Qiaoling Lin & Hanlin Fang & Alexei Kalaboukhov & Yuanda Liu & Yi Zhang & Moritz Fischer & Juntao Li & Joakim Hagel & Samuel Brem & Ermin Malic & Nicolas Stenger & Zhipei Sun & Martijn Wubs & Sanshui , 2024. "Moiré-engineered light-matter interactions in MoS2/WSe2 heterobilayers at room temperature," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Riya Sebait & Roberto Rosati & Seok Joon Yun & Krishna P. Dhakal & Samuel Brem & Chandan Biswas & Alexander Puretzky & Ermin Malic & Young Hee Lee, 2023. "Sequential order dependent dark-exciton modulation in bi-layered TMD heterostructure," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. N. Fang & Y. R. Chang & D. Yamashita & S. Fujii & M. Maruyama & Y. Gao & C. F. Fong & K. Otsuka & K. Nagashio & S. Okada & Y. K. Kato, 2023. "Resonant exciton transfer in mixed-dimensional heterostructures for overcoming dimensional restrictions in optical processes," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    5. N. Fang & Y. R. Chang & S. Fujii & D. Yamashita & M. Maruyama & Y. Gao & C. F. Fong & D. Kozawa & K. Otsuka & K. Nagashio & S. Okada & Y. K. Kato, 2024. "Room-temperature quantum emission from interface excitons in mixed-dimensional heterostructures," Nature Communications, Nature, vol. 15(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:610:y:2022:i:7932:d:10.1038_s41586-022-05193-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.