IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-50130-5.html
   My bibliography  Save this article

Piezoelectricity in chalcogenide perovskites

Author

Listed:
  • Sk Shamim Hasan Abir

    (Rensselaer Polytechnic Institute)

  • Shyam Sharma

    (Rensselaer Polytechnic Institute)

  • Prince Sharma

    (Lehigh University)

  • Surya Karla

    (Rensselaer Polytechnic Institute)

  • Ganesh Balasubramanian

    (University of New Haven)

  • Johnson Samuel

    (Rensselaer Polytechnic Institute)

  • Nikhil Koratkar

    (Rensselaer Polytechnic Institute
    Rensselaer Polytechnic Institute)

Abstract

Piezoelectric materials show potential to harvest the ubiquitous, abundant, and renewable energy associated with mechanical vibrations. However, the best performing piezoelectric materials typically contain lead which is a carcinogen. Such lead-containing materials are hazardous and are being increasingly curtailed by environmental regulations. In this study, we report that the lead-free chalcogenide perovskite family of materials exhibits piezoelectricity. First-principles calculations indicate that even though these materials are centrosymmetric, they are readily polarizable when deformed. The reason for this is shown to be a loosely packed unit cell, containing a significant volume of vacant space. This allows for an extended displacement of the ions, enabling symmetry reduction, and resulting in an enhanced displacement-mediated dipole moment. Piezoresponse force microscopy performed on BaZrS3 confirmed that the material is piezoelectric. Composites of BaZrS3 particles dispersed in polycaprolactone were developed to harvest energy from human body motion for the purposes of powering electrochemical and electronic devices.

Suggested Citation

  • Sk Shamim Hasan Abir & Shyam Sharma & Prince Sharma & Surya Karla & Ganesh Balasubramanian & Johnson Samuel & Nikhil Koratkar, 2024. "Piezoelectricity in chalcogenide perovskites," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50130-5
    DOI: 10.1038/s41467-024-50130-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-50130-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-50130-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Alexei Gruverman & Marin Alexe & Dennis Meier, 2019. "Piezoresponse force microscopy and nanoferroic phenomena," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    2. Wenzhuo Wu & Lei Wang & Yilei Li & Fan Zhang & Long Lin & Simiao Niu & Daniel Chenet & Xian Zhang & Yufeng Hao & Tony F. Heinz & James Hone & Zhong Lin Wang, 2014. "Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics," Nature, Nature, vol. 514(7523), pages 470-474, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yi Hu & Lukas Rogée & Weizhen Wang & Lyuchao Zhuang & Fangyi Shi & Hui Dong & Songhua Cai & Beng Kang Tay & Shu Ping Lau, 2023. "Extendable piezo/ferroelectricity in nonstoichiometric 2D transition metal dichalcogenides," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Ibukun Olaniyan & Iurii Tikhonov & Valentin Väinö Hevelke & Sven Wiesner & Leifeng Zhang & Anna Razumnaya & Nikolay Cherkashin & Sylvie Schamm-Chardon & Igor Lukyanchuk & Dong-Jik Kim & Catherine Dubo, 2024. "Switchable topological polar states in epitaxial BaTiO3 nanoislands on silicon," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Wenhui Li & Xuanlin Zhang & Jia Yang & Song Zhou & Chuangye Song & Peng Cheng & Yi-Qi Zhang & Baojie Feng & Zhenxing Wang & Yunhao Lu & Kehui Wu & Lan Chen, 2023. "Emergence of ferroelectricity in a nonferroelectric monolayer," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Li, Yong & Yang, Jie & Song, Jian, 2016. "Structural model, size effect and nano-energy system design for more sustainable energy of solid state automotive battery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 685-697.
    5. Boqing Liu & Tanju Yildirim & Tieyu Lü & Elena Blundo & Li Wang & Lixue Jiang & Hongshuai Zou & Lijun Zhang & Huijun Zhao & Zongyou Yin & Fangbao Tian & Antonio Polimeni & Yuerui Lu, 2023. "Variant Plateau’s law in atomically thin transition metal dichalcogenide dome networks," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. Daniel Fernandez & Ann Sebastian & Patience Raby & Moneeb Genedy & Ethan C. Ahn & Mahmoud M. Reda Taha & Samer Dessouky & Sara Ahmed, 2023. "Roadway Embedded Smart Illumination Charging System for Electric Vehicles," Energies, MDPI, vol. 16(2), pages 1-21, January.
    7. Zihan Liang & Xin Zhou & Le Zhang & Xiang-Long Yu & Yan Lv & Xuefen Song & Yongheng Zhou & Han Wang & Shuo Wang & Taihong Wang & Perry Ping Shum & Qian He & Yanjun Liu & Chao Zhu & Lin Wang & Xiaolong, 2023. "Strong bulk photovoltaic effect in engineered edge-embedded van der Waals structures," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    8. Shuaiqin Wu & Jie Deng & Xudong Wang & Jing Zhou & Hanxue Jiao & Qianru Zhao & Tie Lin & Hong Shen & Xiangjian Meng & Yan Chen & Junhao Chu & Jianlu Wang, 2024. "Polarization photodetectors with configurable polarity transition enabled by programmable ferroelectric-doping patterns," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    9. Qiuhong Yu & Rui Ge & Juan Wen & Qi Xu & Zhouguang Lu & Shuhai Liu & Yong Qin, 2024. "Electric pulse-tuned piezotronic effect for interface engineering," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    10. Zhenyu Sun & Yueqi Su & Aomiao Zhi & Zhicheng Gao & Xu Han & Kang Wu & Lihong Bao & Yuan Huang & Youguo Shi & Xuedong Bai & Peng Cheng & Lan Chen & Kehui Wu & Xuezeng Tian & Changzheng Wu & Baojie Fen, 2024. "Evidence for multiferroicity in single-layer CuCrSe2," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    11. Haidong Lu & Dong-Jik Kim & Hugo Aramberri & Marco Holzer & Pratyush Buragohain & Sangita Dutta & Uwe Schroeder & Veeresh Deshpande & Jorge Íñiguez & Alexei Gruverman & Catherine Dubourdieu, 2024. "Electrically induced cancellation and inversion of piezoelectricity in ferroelectric Hf0.5Zr0.5O2," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    12. Durga Prasad Karothu & Rodrigo Ferreira & Ghada Dushaq & Ejaz Ahmed & Luca Catalano & Jad Mahmoud Halabi & Zainab Alhaddad & Ibrahim Tahir & Liang Li & Sharmarke Mohamed & Mahmoud Rasras & Panče Naumo, 2025. "Reply to: On the giant deformation and ferroelectricity of guanidinium nitrate," Nature Communications, Nature, vol. 16(1), pages 1-20, December.
    13. Nan Zhang & Wencong Sun & Yao Zhang & Huan-Huan Jiang & Ren-Gen Xiong & Shuai Dong & Han-Yue Zhang, 2023. "Organic radical ferroelectric crystals with martensitic phase transition," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    14. Rui Ge & Qiuhong Yu & Feng Zhou & Shuhai Liu & Yong Qin, 2023. "Dual-modal piezotronic transistor for highly sensitive vertical force sensing and lateral strain sensing," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    15. N. Fang & Y. R. Chang & D. Yamashita & S. Fujii & M. Maruyama & Y. Gao & C. F. Fong & K. Otsuka & K. Nagashio & S. Okada & Y. K. Kato, 2023. "Resonant exciton transfer in mixed-dimensional heterostructures for overcoming dimensional restrictions in optical processes," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    16. Ziyi Han & Shengqiang Wu & Chun Huang & Fengyuan Xuan & Xiaocang Han & Yinfeng Long & Qing Zhang & Junxian Li & Yuan Meng & Lin Wang & Jiahuan Zhou & Wenping Hu & Jingsi Qiao & Dechao Geng & Xiaoxu Zh, 2024. "Atomically engineering interlayer symmetry operations of two-dimensional crystals," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    17. Yan Sun & Shuting Xu & Zheqi Xu & Jiamin Tian & Mengmeng Bai & Zhiying Qi & Yue Niu & Hein Htet Aung & Xiaolu Xiong & Junfeng Han & Cuicui Lu & Jianbo Yin & Sheng Wang & Qing Chen & Reshef Tenne & All, 2022. "Mesoscopic sliding ferroelectricity enabled photovoltaic random access memory for material-level artificial vision system," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    18. Quan Wang & Kyung-Bum Kim & Sang Bum Woo & Yoo Seob Song & Tae Hyun Sung, 2021. "A Flexible Piezoelectric Energy Harvester-Based Single-Layer WS 2 Nanometer 2D Material for Self-Powered Sensors," Energies, MDPI, vol. 14(8), pages 1-14, April.
    19. Taehun Kim & Hyungseok Yong & Banseok Kim & Dongseob Kim & Dukhyun Choi & Yong Tae Park & Sangmin Lee, 2018. "Energy-loss return gate via liquid dielectric polarization," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    20. Jian Wang & Zhijun Han & Longfei Zhang & Ran Ding & Chengqiang Ding & Kai Chen & Zhao Wang, 2025. "Two dimensional MoS2 accelerates mechanically controlled polymerization and remodeling of hydrogel," Nature Communications, Nature, vol. 16(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50130-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.