IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v20y2022i1p517-d1018034.html
   My bibliography  Save this article

Spinel LiMn 2 O 4 as a Capacitive Deionization Electrode Material with High Desalination Capacity: Experiment and Simulation

Author

Listed:
  • Yuxin Jiang

    (School of Metallurgy and Environment, Central South University, Changsha 410083, China)

  • Ken Li

    (School of Metallurgy and Environment, Central South University, Changsha 410083, China)

  • Sikpaam Issaka Alhassan

    (College of Engineering, Chemical and Environmental Engineering Department, University of Arizona, Tucson, AZ 85721, USA)

  • Yiyun Cao

    (School of Metallurgy and Environment, Central South University, Changsha 410083, China)

  • Haoyu Deng

    (School of Metallurgy and Environment, Central South University, Changsha 410083, China)

  • Shan Tan

    (School of Metallurgy and Environment, Central South University, Changsha 410083, China)

  • Haiying Wang

    (School of Metallurgy and Environment, Central South University, Changsha 410083, China
    Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Changsha 410083, China
    Water Pollution Control Technology Key Lab of Hunan Province, Changsha 410083, China)

  • Chongjian Tang

    (School of Metallurgy and Environment, Central South University, Changsha 410083, China
    Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Changsha 410083, China
    Water Pollution Control Technology Key Lab of Hunan Province, Changsha 410083, China)

  • Liyuan Chai

    (School of Metallurgy and Environment, Central South University, Changsha 410083, China
    Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Changsha 410083, China
    Water Pollution Control Technology Key Lab of Hunan Province, Changsha 410083, China)

Abstract

Capacitive deionization (CDI) is a newly developed desalination technology with low energy consumption and environmental friendliness. The surface area restricts the desalination capacities of traditional carbon-based CDI electrodes while battery materials emerge as CDI electrodes with high performances due to the larger electrochemical capacities, but suffer limited production of materials. LiMn 2 O 4 is a massively-produced lithium-ion battery material with a stable spinel structure and a high theoretical specific capacity of 148 mAh·g −1 , revealing a promising candidate for CDI electrode. Herein, we employed spinel LiMn 2 O 4 as the cathode and activated carbon as the anode in the CDI cell with an anion exchange membrane to limit the movement of cations, thus, the lithium ions released from LiMn 2 O 4 would attract the chloride ions and trigger the desalination process of the other side of the membrane. An ultrahigh deionization capacity of 159.49 mg·g −1 was obtained at 1.0 V with an initial salinity of 20 mM. The desalination capacity of the CDI cell at 1.0 V with 10 mM initial NaCl concentration was 91.04 mg·g −1 , higher than that of the system with only carbon electrodes with and without the ion exchange membrane (39.88 mg·g −1 and 7.84 mg·g −1 , respectively). In addition, the desalination results and mechanisms were further verified with the simulation of COMSOL Multiphysics.

Suggested Citation

  • Yuxin Jiang & Ken Li & Sikpaam Issaka Alhassan & Yiyun Cao & Haoyu Deng & Shan Tan & Haiying Wang & Chongjian Tang & Liyuan Chai, 2022. "Spinel LiMn 2 O 4 as a Capacitive Deionization Electrode Material with High Desalination Capacity: Experiment and Simulation," IJERPH, MDPI, vol. 20(1), pages 1-13, December.
  • Handle: RePEc:gam:jijerp:v:20:y:2022:i:1:p:517-:d:1018034
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/20/1/517/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/20/1/517/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Baghbanzadeh, Mohammadali & Rana, Dipak & Lan, Christopher Q. & Matsuura, Takeshi, 2017. "Zero thermal input membrane distillation, a zero-waste and sustainable solution for freshwater shortage," Applied Energy, Elsevier, vol. 187(C), pages 910-928.
    2. Wenzhuo Wu & Lei Wang & Yilei Li & Fan Zhang & Long Lin & Simiao Niu & Daniel Chenet & Xian Zhang & Yufeng Hao & Tony F. Heinz & James Hone & Zhong Lin Wang, 2014. "Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics," Nature, Nature, vol. 514(7523), pages 470-474, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rui Ge & Qiuhong Yu & Feng Zhou & Shuhai Liu & Yong Qin, 2023. "Dual-modal piezotronic transistor for highly sensitive vertical force sensing and lateral strain sensing," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. N. Fang & Y. R. Chang & D. Yamashita & S. Fujii & M. Maruyama & Y. Gao & C. F. Fong & K. Otsuka & K. Nagashio & S. Okada & Y. K. Kato, 2023. "Resonant exciton transfer in mixed-dimensional heterostructures for overcoming dimensional restrictions in optical processes," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    3. Yan Sun & Shuting Xu & Zheqi Xu & Jiamin Tian & Mengmeng Bai & Zhiying Qi & Yue Niu & Hein Htet Aung & Xiaolu Xiong & Junfeng Han & Cuicui Lu & Jianbo Yin & Sheng Wang & Qing Chen & Reshef Tenne & All, 2022. "Mesoscopic sliding ferroelectricity enabled photovoltaic random access memory for material-level artificial vision system," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    4. Quan Wang & Kyung-Bum Kim & Sang Bum Woo & Yoo Seob Song & Tae Hyun Sung, 2021. "A Flexible Piezoelectric Energy Harvester-Based Single-Layer WS 2 Nanometer 2D Material for Self-Powered Sensors," Energies, MDPI, vol. 14(8), pages 1-14, April.
    5. Li, Yong & Yang, Jie & Song, Jian, 2016. "Structural model, size effect and nano-energy system design for more sustainable energy of solid state automotive battery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 685-697.
    6. Wang, Qiushi & Zhu, Ziye & Wu, Gang & Zhang, Xiang & Zheng, Hongfei, 2018. "Energy analysis and experimental verification of a solar freshwater self-produced ecological film floating on the sea," Applied Energy, Elsevier, vol. 224(C), pages 510-526.
    7. Boqing Liu & Tanju Yildirim & Tieyu Lü & Elena Blundo & Li Wang & Lixue Jiang & Hongshuai Zou & Lijun Zhang & Huijun Zhao & Zongyou Yin & Fangbao Tian & Antonio Polimeni & Yuerui Lu, 2023. "Variant Plateau’s law in atomically thin transition metal dichalcogenide dome networks," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    8. Tufa, Ramato Ashu & Noviello, Ylenia & Di Profio, Gianluca & Macedonio, Francesca & Ali, Aamer & Drioli, Enrico & Fontananova, Enrica & Bouzek, Karel & Curcio, Efrem, 2019. "Integrated membrane distillation-reverse electrodialysis system for energy-efficient seawater desalination," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    9. Xu, Jianwei & Liang, Yingzong & Luo, Xianglong & Chen, Jianyong & Yang, Zhi & Chen, Ying, 2023. "Techno-economic-environmental analysis of direct-contact membrane distillation systems integrated with low-grade heat sources: A multi-objective optimization approach," Applied Energy, Elsevier, vol. 349(C).
    10. Li, Qiyuan & Beier, Lisa-Jil & Tan, Joel & Brown, Celia & Lian, Boyue & Zhong, Wenwei & Wang, Yuan & Ji, Chao & Dai, Pan & Li, Tianyu & Le Clech, Pierre & Tyagi, Himanshu & Liu, Xuefei & Leslie, Greg , 2019. "An integrated, solar-driven membrane distillation system for water purification and energy generation," Applied Energy, Elsevier, vol. 237(C), pages 534-548.
    11. Daniel Fernandez & Ann Sebastian & Patience Raby & Moneeb Genedy & Ethan C. Ahn & Mahmoud M. Reda Taha & Samer Dessouky & Sara Ahmed, 2023. "Roadway Embedded Smart Illumination Charging System for Electric Vehicles," Energies, MDPI, vol. 16(2), pages 1-21, January.
    12. Swaminathan, Jaichander & Chung, Hyung Won & Warsinger, David M. & Lienhard V, John H., 2018. "Energy efficiency of membrane distillation up to high salinity: Evaluating critical system size and optimal membrane thickness," Applied Energy, Elsevier, vol. 211(C), pages 715-734.
    13. Long, Rui & Lai, Xiaotian & Liu, Zhichun & Liu, Wei, 2018. "Direct contact membrane distillation system for waste heat recovery: Modelling and multi-objective optimization," Energy, Elsevier, vol. 148(C), pages 1060-1068.
    14. Zihan Liang & Xin Zhou & Le Zhang & Xiang-Long Yu & Yan Lv & Xuefen Song & Yongheng Zhou & Han Wang & Shuo Wang & Taihong Wang & Perry Ping Shum & Qian He & Yanjun Liu & Chao Zhu & Lin Wang & Xiaolong, 2023. "Strong bulk photovoltaic effect in engineered edge-embedded van der Waals structures," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    15. Qiuhong Yu & Rui Ge & Juan Wen & Qi Xu & Zhouguang Lu & Shuhai Liu & Yong Qin, 2024. "Electric pulse-tuned piezotronic effect for interface engineering," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    16. Zhang, Quanguo & Nurhayati, & Cheng, Chieh-Lun & Lo, Yung-Chung & Nagarajan, Dillirani & Hu, Jianjun & Chang, Jo-Shu & Lee, Duu-Jong, 2017. "Ethanol production by modified polyvinyl alcohol-immobilized Zymomonas mobilis and in situ membrane distillation under very high gravity condition," Applied Energy, Elsevier, vol. 202(C), pages 1-5.
    17. Giacomo Clementi & Francesco Cottone & Alessandro Di Michele & Luca Gammaitoni & Maurizio Mattarelli & Gabriele Perna & Miquel López-Suárez & Salvatore Baglio & Carlo Trigona & Igor Neri, 2022. "Review on Innovative Piezoelectric Materials for Mechanical Energy Harvesting," Energies, MDPI, vol. 15(17), pages 1-44, August.
    18. Ke Ren & Fangjie Ding & Lijun Zhang & Fengping Peng & Jianzhong Guo & Chunzheng Wu, 2024. "Enhanced H 2 Generation via Piezoelectric Reforming of Waste Sugars and Fruits Using Au-Decorated g-C 3 N 4," Sustainability, MDPI, vol. 16(10), pages 1-13, May.
    19. Singh, Vishal & Meena, Deshraj & Sharma, Himani & Trivedi, Ashutosh & Singh, Bharti, 2022. "Investigating the role of chalcogen atom in the piezoelectric performance of PVDF/TMDCs based flexible nanogenerator," Energy, Elsevier, vol. 239(PB).
    20. Yi Hu & Lukas Rogée & Weizhen Wang & Lyuchao Zhuang & Fangyi Shi & Hui Dong & Songhua Cai & Beng Kang Tay & Shu Ping Lau, 2023. "Extendable piezo/ferroelectricity in nonstoichiometric 2D transition metal dichalcogenides," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:20:y:2022:i:1:p:517-:d:1018034. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.