IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-43081-w.html
   My bibliography  Save this article

Emergence of task-related spatiotemporal population dynamics in transplanted neurons

Author

Listed:
  • Harman Ghuman

    (University of California, San Francisco)

  • Kyungsoo Kim

    (University of California, San Francisco)

  • Sapeeda Barati

    (University of California, San Francisco)

  • Karunesh Ganguly

    (University of California, San Francisco
    San Francisco Veterans Affairs Medical Center)

Abstract

Loss of nervous system tissue after severe brain injury is a main determinant of poor functional recovery. Cell transplantation is a promising method to restore lost tissue and function, yet it remains unclear if transplanted neurons can demonstrate the population level dynamics important for movement control. Here we present a comprehensive approach for long-term single neuron monitoring and manipulation of transplanted embryonic cortical neurons after cortical injury in adult male mice performing a prehension task. The observed patterns of population activity in the transplanted network strongly resembled that of healthy networks. Specifically, the task-related spatiotemporal activity patterns of transplanted neurons could be represented by latent factors that evolve within a low dimensional manifold. We also demonstrate reliable modulation of the transplanted networks using minimally invasive epidural stimulation. Our approach may allow greater insight into how restoration of cell-type specific network dynamics in vivo can restore motor function.

Suggested Citation

  • Harman Ghuman & Kyungsoo Kim & Sapeeda Barati & Karunesh Ganguly, 2023. "Emergence of task-related spatiotemporal population dynamics in transplanted neurons," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43081-w
    DOI: 10.1038/s41467-023-43081-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-43081-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-43081-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Andrew J. Peters & Simon X. Chen & Takaki Komiyama, 2014. "Emergence of reproducible spatiotemporal activity during motor learning," Nature, Nature, vol. 510(7504), pages 263-267, June.
    2. Anli Liu & Mihály Vöröslakos & Greg Kronberg & Simon Henin & Matthew R. Krause & Yu Huang & Alexander Opitz & Ashesh Mehta & Christopher C. Pack & Bart Krekelberg & Antal Berényi & Lucas C. Parra & Lu, 2018. "Immediate neurophysiological effects of transcranial electrical stimulation," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    3. Bingyao Zhu & Jisu Eom & Robert F. Hunt, 2019. "Transplanted interneurons improve memory precision after traumatic brain injury," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
    4. Madeline A. Lancaster & Magdalena Renner & Carol-Anne Martin & Daniel Wenzel & Louise S. Bicknell & Matthew E. Hurles & Tessa Homfray & Josef M. Penninger & Andrew P. Jackson & Juergen A. Knoblich, 2013. "Cerebral organoids model human brain development and microcephaly," Nature, Nature, vol. 501(7467), pages 373-379, September.
    5. Peter Carmeliet & Rakesh K. Jain, 2000. "Angiogenesis in cancer and other diseases," Nature, Nature, vol. 407(6801), pages 249-257, September.
    6. Mark M. Churchland & John P. Cunningham & Matthew T. Kaufman & Justin D. Foster & Paul Nuyujukian & Stephen I. Ryu & Krishna V. Shenoy, 2012. "Neural population dynamics during reaching," Nature, Nature, vol. 487(7405), pages 51-56, July.
    7. Henrik Lindén & Peter C. Petersen & Mikkel Vestergaard & Rune W. Berg, 2022. "Movement is governed by rotational neural dynamics in spinal motor networks," Nature, Nature, vol. 610(7932), pages 526-531, October.
    8. Omer Revah & Felicity Gore & Kevin W. Kelley & Jimena Andersen & Noriaki Sakai & Xiaoyu Chen & Min-Yin Li & Fikri Birey & Xiao Yang & Nay L. Saw & Samuel W. Baker & Neal D. Amin & Shravanti Kulkarni &, 2022. "Maturation and circuit integration of transplanted human cortical organoids," Nature, Nature, vol. 610(7931), pages 319-326, October.
    9. Susanne Falkner & Sofia Grade & Leda Dimou & Karl-Klaus Conzelmann & Tobias Bonhoeffer & Magdalena Götz & Mark Hübener, 2016. "Transplanted embryonic neurons integrate into adult neocortical circuits," Nature, Nature, vol. 539(7628), pages 248-253, November.
    10. Madison N. Wilson & Martin Thunemann & Xin Liu & Yichen Lu & Francesca Puppo & Jason W. Adams & Jeong-Hoon Kim & Mehrdad Ramezani & Donald P. Pizzo & Srdjan Djurovic & Ole A. Andreassen & Abed AlFatah, 2022. "Multimodal monitoring of human cortical organoids implanted in mice reveal functional connection with visual cortex," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    11. Britton A. Sauerbrei & Jian-Zhong Guo & Jeremy D. Cohen & Matteo Mischiati & Wendy Guo & Mayank Kabra & Nakul Verma & Brett Mensh & Kristin Branson & Adam W. Hantman, 2020. "Cortical pattern generation during dexterous movement is input-driven," Nature, Nature, vol. 577(7790), pages 386-391, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eric A. Kirk & Keenan T. Hope & Samuel J. Sober & Britton A. Sauerbrei, 2024. "An output-null signature of inertial load in motor cortex," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    2. Sanaya N. Shroff & Eric Lowet & Sudiksha Sridhar & Howard J. Gritton & Mohammed Abumuaileq & Hua-An Tseng & Cyrus Cheung & Samuel L. Zhou & Krishnakanth Kondabolu & Xue Han, 2023. "Striatal cholinergic interneuron membrane voltage tracks locomotor rhythms in mice," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    3. Liang Wang & Jingyi Du & Qilu Liu & Dongshuang Wang & Wenhan Wang & Ming Lei & Keyi Li & Yiwei Li & Aijun Hao & Yuanhua Sang & Fan Yi & Wenjuan Zhou & Hong Liu & Chuanbin Mao & Jichuan Qiu, 2024. "Wrapping stem cells with wireless electrical nanopatches for traumatic brain injury therapy," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    4. Sravani Kondapavulur & Stefan M. Lemke & David Darevsky & Ling Guo & Preeya Khanna & Karunesh Ganguly, 2022. "Transition from predictable to variable motor cortex and striatal ensemble patterning during behavioral exploration," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    5. Nan Hu & Jian-Xin Shi & Chong Chen & Hai-Huan Xu & Zhe-Han Chang & Peng-Fei Hu & Di Guo & Xiao-Wang Zhang & Wen-Wei Shao & Xiu Fan & Jia-Chen Zuo & Dong Ming & Xiao-Hong Li, 2024. "Constructing organoid-brain-computer interfaces for neurofunctional repair after brain injury," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    6. Bin Wu & Haixiang Wu & Xiaoyan Liu & Houwen Lin & Jin Li, 2014. "Ranibizumab versus Bevacizumab for Ophthalmic Diseases Related to Neovascularisation: A Meta-Analysis of Randomised Controlled Trials," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-8, July.
    7. Jessica M. Vanslambrouck & Sean B. Wilson & Ker Sin Tan & Ella Groenewegen & Rajeev Rudraraju & Jessica Neil & Kynan T. Lawlor & Sophia Mah & Michelle Scurr & Sara E. Howden & Kanta Subbarao & Melissa, 2022. "Enhanced metanephric specification to functional proximal tubule enables toxicity screening and infectious disease modelling in kidney organoids," Nature Communications, Nature, vol. 13(1), pages 1-23, December.
    8. Jan C. Frankowski & Alexa Tierno & Shreya Pavani & Quincy Cao & David C. Lyon & Robert F. Hunt, 2022. "Brain-wide reconstruction of inhibitory circuits after traumatic brain injury," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    9. Shan Yu & Andreas Klaus & Hongdian Yang & Dietmar Plenz, 2014. "Scale-Invariant Neuronal Avalanche Dynamics and the Cut-Off in Size Distributions," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-12, June.
    10. Ian S Howard & David W Franklin, 2015. "Neural Tuning Functions Underlie Both Generalization and Interference," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-21, June.
    11. Laura Empl & Alexandra Chovsepian & Maryam Chahin & Wing Yin Vanessa Kan & Julie Fourneau & Valérie Steenbergen & Sanofer Weidinger & Maite Marcantoni & Alexander Ghanem & Peter Bradley & Karl Klaus C, 2022. "Selective plasticity of callosal neurons in the adult contralesional cortex following murine traumatic brain injury," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    12. Elizabeth A. Werren & Geneva R. LaForce & Anshika Srivastava & Delia R. Perillo & Shaokun Li & Katherine Johnson & Safa Baris & Brandon Berger & Samantha L. Regan & Christian D. Pfennig & Sonja Munnik, 2024. "TREX tetramer disruption alters RNA processing necessary for corticogenesis in THOC6 Intellectual Disability Syndrome," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    13. Pierre O. Boucher & Tian Wang & Laura Carceroni & Gary Kane & Krishna V. Shenoy & Chandramouli Chandrasekaran, 2023. "Initial conditions combine with sensory evidence to induce decision-related dynamics in premotor cortex," Nature Communications, Nature, vol. 14(1), pages 1-28, December.
    14. Adrian M Haith & David M Huberdeau & John W Krakauer, 2015. "Hedging Your Bets: Intermediate Movements as Optimal Behavior in the Context of an Incomplete Decision," PLOS Computational Biology, Public Library of Science, vol. 11(3), pages 1-21, March.
    15. Wendiao Zhang & Ming Zhang & Zhenhong Xu & Hongye Yan & Huimin Wang & Jiamei Jiang & Juan Wan & Beisha Tang & Chunyu Liu & Chao Chen & Qingtuan Meng, 2023. "Human forebrain organoid-based multi-omics analyses of PCCB as a schizophrenia associated gene linked to GABAergic pathways," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    16. Anna Pagliaro & Roxy Finger & Iris Zoutendijk & Saskia Bunschuh & Hans Clevers & Delilah Hendriks & Benedetta Artegiani, 2023. "Temporal morphogen gradient-driven neural induction shapes single expanded neuroepithelium brain organoids with enhanced cortical identity," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    17. Rocío Vega & Manuel Carretero & Rui D M Travasso & Luis L Bonilla, 2020. "Notch signaling and taxis mechanisms regulate early stage angiogenesis: A mathematical and computational model," PLOS Computational Biology, Public Library of Science, vol. 16(1), pages 1-31, January.
    18. Masakazu Agetsuma & Issei Sato & Yasuhiro R. Tanaka & Luis Carrillo-Reid & Atsushi Kasai & Atsushi Noritake & Yoshiyuki Arai & Miki Yoshitomo & Takashi Inagaki & Hiroshi Yukawa & Hitoshi Hashimoto & J, 2023. "Activity-dependent organization of prefrontal hub-networks for associative learning and signal transformation," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    19. Nir Even-Chen & Blue Sheffer & Saurabh Vyas & Stephen I Ryu & Krishna V Shenoy, 2019. "Structure and variability of delay activity in premotor cortex," PLOS Computational Biology, Public Library of Science, vol. 15(2), pages 1-17, February.
    20. Josh Merel & Donald M Pianto & John P Cunningham & Liam Paninski, 2015. "Encoder-Decoder Optimization for Brain-Computer Interfaces," PLOS Computational Biology, Public Library of Science, vol. 11(6), pages 1-25, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43081-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.