IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-46787-7.html
   My bibliography  Save this article

Complex activity and short-term plasticity of human cerebral organoids reciprocally connected with axons

Author

Listed:
  • Tatsuya Osaki

    (The University of Tokyo
    The University of Tokyo)

  • Tomoya Duenki

    (The University of Tokyo
    The University of Tokyo
    The University of Tokyo
    The University of Tokyo)

  • Siu Yu A. Chow

    (The University of Tokyo
    The University of Tokyo)

  • Yasuhiro Ikegami

    (The University of Tokyo
    The University of Tokyo)

  • Romain Beaubois

    (The University of Tokyo
    The University of Tokyo
    UMR5218, University of Bordeaux)

  • Timothée Levi

    (The University of Tokyo
    The University of Tokyo
    UMR5218, University of Bordeaux)

  • Nao Nakagawa-Tamagawa

    (The University of Tokyo
    Kagoshima University)

  • Yoji Hirano

    (The University of Tokyo
    Kyushu University
    University of Miyazaki)

  • Yoshiho Ikeuchi

    (The University of Tokyo
    The University of Tokyo
    The University of Tokyo
    The University of Tokyo)

Abstract

An inter-regional cortical tract is one of the most fundamental architectural motifs that integrates neural circuits to orchestrate and generate complex functions of the human brain. To understand the mechanistic significance of inter-regional projections on development of neural circuits, we investigated an in vitro neural tissue model for inter-regional connections, in which two cerebral organoids are connected with a bundle of reciprocally extended axons. The connected organoids produced more complex and intense oscillatory activity than conventional or directly fused cerebral organoids, suggesting the inter-organoid axonal connections enhance and support the complex network activity. In addition, optogenetic stimulation of the inter-organoid axon bundles could entrain the activity of the organoids and induce robust short-term plasticity of the macroscopic circuit. These results demonstrated that the projection axons could serve as a structural hub that boosts functionality of the organoid-circuits. This model could contribute to further investigation on development and functions of macroscopic neuronal circuits in vitro.

Suggested Citation

  • Tatsuya Osaki & Tomoya Duenki & Siu Yu A. Chow & Yasuhiro Ikegami & Romain Beaubois & Timothée Levi & Nao Nakagawa-Tamagawa & Yoji Hirano & Yoshiho Ikeuchi, 2024. "Complex activity and short-term plasticity of human cerebral organoids reciprocally connected with axons," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46787-7
    DOI: 10.1038/s41467-024-46787-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-46787-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-46787-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Seok-Jun Hong & Reinder Vos de Wael & Richard A. I. Bethlehem & Sara Lariviere & Casey Paquola & Sofie L. Valk & Michael P. Milham & Adriana Di Martino & Daniel S. Margulies & Jonathan Smallwood & Bor, 2019. "Atypical functional connectome hierarchy in autism," Nature Communications, Nature, vol. 10(1), pages 1-13, December.
    2. M. Angeles Rabadan & Estanislao Daniel De La Cruz & Sneha B. Rao & Yannan Chen & Cheng Gong & Gregg Crabtree & Bin Xu & Sander Markx & Joseph A. Gogos & Rafael Yuste & Raju Tomer, 2022. "An in vitro model of neuronal ensembles," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    3. Madeline A. Lancaster & Magdalena Renner & Carol-Anne Martin & Daniel Wenzel & Louise S. Bicknell & Matthew E. Hurles & Tessa Homfray & Josef M. Penninger & Andrew P. Jackson & Juergen A. Knoblich, 2013. "Cerebral organoids model human brain development and microcephaly," Nature, Nature, vol. 501(7467), pages 373-379, September.
    4. Uwe Frey & Richard G. M. Morris, 1997. "Synaptic tagging and long-term potentiation," Nature, Nature, vol. 385(6616), pages 533-536, February.
    5. Fikri Birey & Jimena Andersen & Christopher D. Makinson & Saiful Islam & Wu Wei & Nina Huber & H. Christina Fan & Kimberly R. Cordes Metzler & Georgia Panagiotakos & Nicholas Thom & Nancy A. O’Rourke , 2017. "Assembly of functionally integrated human forebrain spheroids," Nature, Nature, vol. 545(7652), pages 54-59, May.
    6. Tal Sharf & Tjitse Molen & Stella M. K. Glasauer & Elmer Guzman & Alessio P. Buccino & Gabriel Luna & Zhuowei Cheng & Morgane Audouard & Kamalini G. Ranasinghe & Kiwamu Kudo & Srikantan S. Nagarajan &, 2022. "Functional neuronal circuitry and oscillatory dynamics in human brain organoids," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Romain Beaubois & Jérémy Cheslet & Tomoya Duenki & Giuseppe De Venuto & Marta Carè & Farad Khoyratee & Michela Chiappalone & Pascal Branchereau & Yoshiho Ikeuchi & Timothée Levi, 2024. "BiœmuS: A new tool for neurological disorders studies through real-time emulation and hybridization using biomimetic Spiking Neural Network," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anna Pagliaro & Roxy Finger & Iris Zoutendijk & Saskia Bunschuh & Hans Clevers & Delilah Hendriks & Benedetta Artegiani, 2023. "Temporal morphogen gradient-driven neural induction shapes single expanded neuroepithelium brain organoids with enhanced cortical identity," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    2. Elaine T. Lim & Yingleong Chan & Pepper Dawes & Xiaoge Guo & Serkan Erdin & Derek J. C. Tai & Songlei Liu & Julia M. Reichert & Mannix J. Burns & Ying Kai Chan & Jessica J. Chiang & Katharina Meyer & , 2022. "Orgo-Seq integrates single-cell and bulk transcriptomic data to identify cell type specific-driver genes associated with autism spectrum disorder," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    3. Tal Sharf & Tjitse Molen & Stella M. K. Glasauer & Elmer Guzman & Alessio P. Buccino & Gabriel Luna & Zhuowei Cheng & Morgane Audouard & Kamalini G. Ranasinghe & Kiwamu Kudo & Srikantan S. Nagarajan &, 2022. "Functional neuronal circuitry and oscillatory dynamics in human brain organoids," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    4. Yueqi Wang & Simone Chiola & Guang Yang & Chad Russell & Celeste J. Armstrong & Yuanyuan Wu & Jay Spampanato & Paisley Tarboton & H. M. Arif Ullah & Nicolas U. Edgar & Amelia N. Chang & David A. Harmi, 2022. "Modeling human telencephalic development and autism-associated SHANK3 deficiency using organoids generated from single neural rosettes," Nature Communications, Nature, vol. 13(1), pages 1-25, December.
    5. Maisumu Gulimiheranmu & Shuang Li & Junmei Zhou, 2021. "In Vitro Recapitulation of Neuropsychiatric Disorders with Pluripotent Stem Cells-Derived Brain Organoids," IJERPH, MDPI, vol. 18(23), pages 1-14, November.
    6. Jaschke Philipp & Sulin Sardoschau & Marco Tabellini, 2021. "Scared Straight? Threat and Assimilation of Refugees in Germany," RF Berlin - CReAM Discussion Paper Series 2136, Rockwool Foundation Berlin (RF Berlin) - Centre for Research and Analysis of Migration (CReAM).
    7. Jessica M. Vanslambrouck & Sean B. Wilson & Ker Sin Tan & Ella Groenewegen & Rajeev Rudraraju & Jessica Neil & Kynan T. Lawlor & Sophia Mah & Michelle Scurr & Sara E. Howden & Kanta Subbarao & Melissa, 2022. "Enhanced metanephric specification to functional proximal tubule enables toxicity screening and infectious disease modelling in kidney organoids," Nature Communications, Nature, vol. 13(1), pages 1-23, December.
    8. Douglas Feitosa Tomé & Sadra Sadeh & Claudia Clopath, 2022. "Coordinated hippocampal-thalamic-cortical communication crucial for engram dynamics underneath systems consolidation," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    9. Elizabeth A. Werren & Geneva R. LaForce & Anshika Srivastava & Delia R. Perillo & Shaokun Li & Katherine Johnson & Safa Baris & Brandon Berger & Samantha L. Regan & Christian D. Pfennig & Sonja Munnik, 2024. "TREX tetramer disruption alters RNA processing necessary for corticogenesis in THOC6 Intellectual Disability Syndrome," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    10. Wendiao Zhang & Ming Zhang & Zhenhong Xu & Hongye Yan & Huimin Wang & Jiamei Jiang & Juan Wan & Beisha Tang & Chunyu Liu & Chao Chen & Qingtuan Meng, 2023. "Human forebrain organoid-based multi-omics analyses of PCCB as a schizophrenia associated gene linked to GABAergic pathways," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    11. Maura Galimberti & Maria R. Nucera & Vittoria D. Bocchi & Paola Conforti & Elena Vezzoli & Matteo Cereda & Camilla Maffezzini & Raffaele Iennaco & Andrea Scolz & Andrea Falqui & Chiara Cordiglieri & M, 2024. "Huntington’s disease cellular phenotypes are rescued non-cell autonomously by healthy cells in mosaic telencephalic organoids," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    12. Mühlberger, Wolfgang, 2022. "Iraks Suche nach dem Gesellschaftsvertrag: Ein Ansatz zur Förderung gesellschaftlichen Zusammenhalts und staatlicher Resilienz," IDOS Discussion Papers 13/2022, German Institute of Development and Sustainability (IDOS).
    13. Philipp Jaschke & Sulin Sardoschau & Marco Tabellini, 2023. "Scared Straight? Threat and Assimilation of Refugees in Germany," Rationality and Competition Discussion Paper Series 384, CRC TRR 190 Rationality and Competition.
    14. Olga A. Balashova & Alexios A. Panoutsopoulos & Olesya Visina & Jacob Selhub & Paul S. Knoepfler & Laura N. Borodinsky, 2024. "Noncanonical function of folate through folate receptor 1 during neural tube formation," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    15. Tom Brandstätter & David B. Brückner & Yu Long Han & Ricard Alert & Ming Guo & Chase P. Broedersz, 2023. "Curvature induces active velocity waves in rotating spherical tissues," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    16. Lauren Rylaarsdam & Jennifer Rakotomamonjy & Eleanor Pope & Alicia Guemez-Gamboa, 2024. "iPSC-derived models of PACS1 syndrome reveal transcriptional and functional deficits in neuron activity," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    17. Christina Kyrousi & Adam C. O’Neill & Agnieska Brazovskaja & Zhisong He & Pavel Kielkowski & Laure Coquand & Rossella Giaimo & Pierpaolo D’ Andrea & Alexander Belka & Andrea Forero Echeverry & Davide , 2021. "Extracellular LGALS3BP regulates neural progenitor position and relates to human cortical complexity," Nature Communications, Nature, vol. 12(1), pages 1-22, December.
    18. Syed Ghazi Sarwat & Timoleon Moraitis & C. David Wright & Harish Bhaskaran, 2022. "Chalcogenide optomemristors for multi-factor neuromorphic computation," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    19. Giuliano, Paola & Spilimbergo, Antonio, 2024. "Aggregate Shocks and the Formation of Preferences and Beliefs," IZA Discussion Papers 17110, Institute of Labor Economics (IZA).
    20. Teresa L. Rapp & Cole A. DeForest, 2023. "Tricolor visible wavelength-selective photodegradable hydrogel biomaterials," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46787-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.