IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-51750-7.html
   My bibliography  Save this article

An output-null signature of inertial load in motor cortex

Author

Listed:
  • Eric A. Kirk

    (Case Western Reserve University School of Medicine)

  • Keenan T. Hope

    (Case Western Reserve University School of Medicine)

  • Samuel J. Sober

    (Emory University)

  • Britton A. Sauerbrei

    (Case Western Reserve University School of Medicine)

Abstract

Coordinated movement requires the nervous system to continuously compensate for changes in mechanical load across different conditions. For voluntary movements like reaching, the motor cortex is a critical hub that generates commands to move the limbs and counteract loads. How does cortex contribute to load compensation when rhythmic movements are sequenced by a spinal pattern generator? Here, we address this question by manipulating the mass of the forelimb in unrestrained mice during locomotion. While load produces changes in motor output that are robust to inactivation of motor cortex, it also induces a profound shift in cortical dynamics. This shift is minimally affected by cerebellar perturbation and significantly larger than the load response in the spinal motoneuron population. This latent representation may enable motor cortex to generate appropriate commands when a voluntary movement must be integrated with an ongoing, spinally-generated rhythm.

Suggested Citation

  • Eric A. Kirk & Keenan T. Hope & Samuel J. Sober & Britton A. Sauerbrei, 2024. "An output-null signature of inertial load in motor cortex," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51750-7
    DOI: 10.1038/s41467-024-51750-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-51750-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-51750-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zhenyu Gao & Courtney Davis & Alyse M. Thomas & Michael N. Economo & Amada M. Abrego & Karel Svoboda & Chris I. Zeeuw & Nuo Li, 2018. "A cortico-cerebellar loop for motor planning," Nature, Nature, vol. 563(7729), pages 113-116, November.
    2. Gamaleldin F. Elsayed & Antonio H. Lara & Matthew T. Kaufman & Mark M. Churchland & John P. Cunningham, 2016. "Reorganization between preparatory and movement population responses in motor cortex," Nature Communications, Nature, vol. 7(1), pages 1-15, December.
    3. Mark M. Churchland & John P. Cunningham & Matthew T. Kaufman & Justin D. Foster & Paul Nuyujukian & Stephen I. Ryu & Krishna V. Shenoy, 2012. "Neural population dynamics during reaching," Nature, Nature, vol. 487(7405), pages 51-56, July.
    4. Nuo Li & Kayvon Daie & Karel Svoboda & Shaul Druckmann, 2016. "Robust neuronal dynamics in premotor cortex during motor planning," Nature, Nature, vol. 532(7600), pages 459-464, April.
    5. Henrik Lindén & Peter C. Petersen & Mikkel Vestergaard & Rune W. Berg, 2022. "Movement is governed by rotational neural dynamics in spinal motor networks," Nature, Nature, vol. 610(7932), pages 526-531, October.
    6. Nuo Li & Kayvon Daie & Karel Svoboda & Shaul Druckmann, 2016. "Correction: Corrigendum: Robust neuronal dynamics in premotor cortex during motor planning," Nature, Nature, vol. 537(7618), pages 122-122, September.
    7. Paolo Capelli & Chiara Pivetta & Maria Soledad Esposito & Silvia Arber, 2017. "Locomotor speed control circuits in the caudal brainstem," Nature, Nature, vol. 551(7680), pages 373-377, November.
    8. V. Caggiano & R. Leiras & H. Goñi-Erro & D. Masini & C. Bellardita & J. Bouvier & V. Caldeira & G. Fisone & O. Kiehn, 2018. "Midbrain circuits that set locomotor speed and gait selection," Nature, Nature, vol. 553(7689), pages 455-460, January.
    9. Zengcai V. Guo & Hidehiko K. Inagaki & Kayvon Daie & Shaul Druckmann & Charles R. Gerfen & Karel Svoboda, 2017. "Maintenance of persistent activity in a frontal thalamocortical loop," Nature, Nature, vol. 545(7653), pages 181-186, May.
    10. Ignacio Alonso & Irina Scheer & Mélanie Palacio-Manzano & Noémie Frézel-Jacob & Antoine Philippides & Mario Prsa, 2023. "Peripersonal encoding of forelimb proprioception in the mouse somatosensory cortex," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    11. Xulu Sun & Daniel J. O’Shea & Matthew D. Golub & Eric M. Trautmann & Saurabh Vyas & Stephen I. Ryu & Krishna V. Shenoy, 2022. "Cortical preparatory activity indexes learned motor memories," Nature, Nature, vol. 602(7896), pages 274-279, February.
    12. Britton A. Sauerbrei & Jian-Zhong Guo & Jeremy D. Cohen & Matteo Mischiati & Wendy Guo & Mayank Kabra & Nakul Verma & Brett Mensh & Kristin Branson & Adam W. Hantman, 2020. "Cortical pattern generation during dexterous movement is input-driven," Nature, Nature, vol. 577(7790), pages 386-391, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tanner C Dixon & Christina M Merrick & Joni D Wallis & Richard B Ivry & Jose M Carmena, 2021. "Hybrid dedicated and distributed coding in PMd/M1 provides separation and interaction of bilateral arm signals," PLOS Computational Biology, Public Library of Science, vol. 17(11), pages 1-35, November.
    2. Xin Wei Chia & Jian Kwang Tan & Lee Fang Ang & Tsukasa Kamigaki & Hiroshi Makino, 2023. "Emergence of cortical network motifs for short-term memory during learning," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    3. Alyse Thomas & Weiguo Yang & Catherine Wang & Sri Laasya Tipparaju & Guang Chen & Brennan Sullivan & Kylie Swiekatowski & Mahima Tatam & Charles Gerfen & Nuo Li, 2023. "Superior colliculus bidirectionally modulates choice activity in frontal cortex," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    4. Huee Ru Chong & Yadollah Ranjbar-Slamloo & Malcolm Zheng Hao Ho & Xuan Ouyang & Tsukasa Kamigaki, 2023. "Functional alterations of the prefrontal circuit underlying cognitive aging in mice," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    5. Harman Ghuman & Kyungsoo Kim & Sapeeda Barati & Karunesh Ganguly, 2023. "Emergence of task-related spatiotemporal population dynamics in transplanted neurons," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    6. Sanaya N. Shroff & Eric Lowet & Sudiksha Sridhar & Howard J. Gritton & Mohammed Abumuaileq & Hua-An Tseng & Cyrus Cheung & Samuel L. Zhou & Krishnakanth Kondabolu & Xue Han, 2023. "Striatal cholinergic interneuron membrane voltage tracks locomotor rhythms in mice," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    7. Satoshi Koba & Nao Kumada & Emi Narai & Naoya Kataoka & Kazuhiro Nakamura & Tatsuo Watanabe, 2022. "A brainstem monosynaptic excitatory pathway that drives locomotor activities and sympathetic cardiovascular responses," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    8. Pierre O. Boucher & Tian Wang & Laura Carceroni & Gary Kane & Krishna V. Shenoy & Chandramouli Chandrasekaran, 2023. "Initial conditions combine with sensory evidence to induce decision-related dynamics in premotor cortex," Nature Communications, Nature, vol. 14(1), pages 1-28, December.
    9. Nir Even-Chen & Blue Sheffer & Saurabh Vyas & Stephen I Ryu & Krishna V Shenoy, 2019. "Structure and variability of delay activity in premotor cortex," PLOS Computational Biology, Public Library of Science, vol. 15(2), pages 1-17, February.
    10. Li-Ju Hsu & Maëlle Bertho & Ole Kiehn, 2023. "Deconstructing the modular organization and real-time dynamics of mammalian spinal locomotor networks," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    11. Benjamin R Cowley & Matthew A Smith & Adam Kohn & Byron M Yu, 2016. "Stimulus-Driven Population Activity Patterns in Macaque Primary Visual Cortex," PLOS Computational Biology, Public Library of Science, vol. 12(12), pages 1-31, December.
    12. J. Tyler Boyd-Meredith & Alex T. Piet & Emily Jane Dennis & Ahmed El Hady & Carlos D. Brody, 2022. "Stable choice coding in rat frontal orienting fields across model-predicted changes of mind," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    13. A. Barri & M. T. Wiechert & M. Jazayeri & D. A. DiGregorio, 2022. "Synaptic basis of a sub-second representation of time in a neural circuit model," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    14. Akshay Markanday & Sungho Hong & Junya Inoue & Erik Schutter & Peter Thier, 2023. "Multidimensional cerebellar computations for flexible kinematic control of movements," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    15. João D. Semedo & Anna I. Jasper & Amin Zandvakili & Aravind Krishna & Amir Aschner & Christian K. Machens & Adam Kohn & Byron M. Yu, 2022. "Feedforward and feedback interactions between visual cortical areas use different population activity patterns," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    16. Joanna C. Chang & Matthew G. Perich & Lee E. Miller & Juan A. Gallego & Claudia Clopath, 2024. "De novo motor learning creates structure in neural activity that shapes adaptation," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    17. Maxime Lemieux & Narges Karimi & Frederic Bretzner, 2024. "Functional plasticity of glutamatergic neurons of medullary reticular nuclei after spinal cord injury in mice," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    18. Christopher F. Angeloni & Wiktor Młynarski & Eugenio Piasini & Aaron M. Williams & Katherine C. Wood & Linda Garami & Ann M. Hermundstad & Maria N. Geffen, 2023. "Dynamics of cortical contrast adaptation predict perception of signals in noise," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    19. Yue Liu & Xiao-Jing Wang, 2024. "Flexible gating between subspaces in a neural network model of internally guided task switching," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    20. Alberto Lazari & Piergiorgio Salvan & Lennart Verhagen & Michiel Cottaar & Daniel Papp & Olof Jens van der Werf & Bronwyn Gavine & James Kolasinski & Matthew Webster & Charlotte J. Stagg & Matthew F. , 2022. "A macroscopic link between interhemispheric tract myelination and cortico-cortical interactions during action reprogramming," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51750-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.