IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-42866-3.html
   My bibliography  Save this article

Synchronous micromechanically resonant programmable photonic circuits

Author

Listed:
  • Mark Dong

    (The MITRE Corporation
    Massachusetts Institute of Technology)

  • Julia M. Boyle

    (The MITRE Corporation)

  • Kevin J. Palm

    (The MITRE Corporation)

  • Matthew Zimmermann

    (The MITRE Corporation)

  • Alex Witte

    (The MITRE Corporation)

  • Andrew J. Leenheer

    (Sandia National Laboratories)

  • Daniel Dominguez

    (Sandia National Laboratories)

  • Gerald Gilbert

    (The MITRE Corporation)

  • Matt Eichenfield

    (Sandia National Laboratories
    University of Arizona)

  • Dirk Englund

    (Massachusetts Institute of Technology
    Brookhaven National Laboratory)

Abstract

Programmable photonic integrated circuits (PICs) are emerging as powerful tools for control of light, with applications in quantum information processing, optical range finding, and artificial intelligence. Low-power implementations of these PICs involve micromechanical structures driven capacitively or piezoelectrically but are often limited in modulation bandwidth by mechanical resonances and high operating voltages. Here we introduce a synchronous, micromechanically resonant design architecture for programmable PICs and a proof-of-principle 1×8 photonic switch using piezoelectric optical phase shifters. Our design purposefully exploits high-frequency mechanical resonances and optically broadband components for larger modulation responses on the order of the mechanical quality factor Qm while maintaining fast switching speeds. We experimentally show switching cycles of all 8 channels spaced by approximately 11 ns and operating at 4.6 dB average modulation enhancement. Future advances in micromechanical devices with high Qm, which can exceed 10000, should enable an improved series of low-voltage and high-speed programmable PICs.

Suggested Citation

  • Mark Dong & Julia M. Boyle & Kevin J. Palm & Matthew Zimmermann & Alex Witte & Andrew J. Leenheer & Daniel Dominguez & Gerald Gilbert & Matt Eichenfield & Dirk Englund, 2023. "Synchronous micromechanically resonant programmable photonic circuits," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42866-3
    DOI: 10.1038/s41467-023-42866-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-42866-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-42866-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jie Sun & Erman Timurdogan & Ami Yaacobi & Ehsan Shah Hosseini & Michael R. Watts, 2013. "Large-scale nanophotonic phased array," Nature, Nature, vol. 493(7431), pages 195-199, January.
    2. Viacheslav Snigirev & Annina Riedhauser & Grigory Lihachev & Mikhail Churaev & Johann Riemensberger & Rui Ning Wang & Anat Siddharth & Guanhao Huang & Charles Möhl & Youri Popoff & Ute Drechsler & Dan, 2023. "Ultrafast tunable lasers using lithium niobate integrated photonics," Nature, Nature, vol. 615(7952), pages 411-417, March.
    3. Saeed Sharif Azadeh & Jason C. C. Mak & Hong Chen & Xianshu Luo & Fu-Der Chen & Hongyao Chua & Frank Weiss & Christopher Alexiev & Andrei Stalmashonak & Youngho Jung & John N. Straguzzi & Guo-Qiang Lo, 2023. "Microcantilever-integrated photonic circuits for broadband laser beam scanning," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    4. Wim Bogaerts & Daniel Pérez & José Capmany & David A. B. Miller & Joyce Poon & Dirk Englund & Francesco Morichetti & Andrea Melloni, 2020. "Programmable photonic circuits," Nature, Nature, vol. 586(7828), pages 207-216, October.
    5. Lars S. Madsen & Fabian Laudenbach & Mohsen Falamarzi. Askarani & Fabien Rortais & Trevor Vincent & Jacob F. F. Bulmer & Filippo M. Miatto & Leonhard Neuhaus & Lukas G. Helt & Matthew J. Collins & Adr, 2022. "Quantum computational advantage with a programmable photonic processor," Nature, Nature, vol. 606(7912), pages 75-81, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. H. H. Zhu & J. Zou & H. Zhang & Y. Z. Shi & S. B. Luo & N. Wang & H. Cai & L. X. Wan & B. Wang & X. D. Jiang & J. Thompson & X. S. Luo & X. H. Zhou & L. M. Xiao & W. Huang & L. Patrick & M. Gu & L. C., 2022. "Space-efficient optical computing with an integrated chip diffractive neural network," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Takaya Ochiai & Tomohiro Akazawa & Yuto Miyatake & Kei Sumita & Shuhei Ohno & Stéphane Monfray & Frederic Boeuf & Kasidit Toprasertpong & Shinichi Takagi & Mitsuru Takenaka, 2022. "Ultrahigh-responsivity waveguide-coupled optical power monitor for Si photonic circuits operating at near-infrared wavelengths," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. Dominik D. Bühler & Matthias Weiß & Antonio Crespo-Poveda & Emeline D. S. Nysten & Jonathan J. Finley & Kai Müller & Paulo V. Santos & Mauricio M. Lima & Hubert J. Krenner, 2022. "On-chip generation and dynamic piezo-optomechanical rotation of single photons," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Sofia Priazhkina & Samuel Palmer & Pablo Martín-Ramiro & Román Orús & Samuel Mugel & Vladimir Skavysh, 2024. "Digital Payments in Firm Networks: Theory of Adoption and Quantum Algorithm," Staff Working Papers 24-17, Bank of Canada.
    5. Jin Ming Koh & Tommy Tai & Ching Hua Lee, 2024. "Realization of higher-order topological lattices on a quantum computer," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    6. Yang Yang & Robert J. Chapman & Ben Haylock & Francesco Lenzini & Yogesh N. Joglekar & Mirko Lobino & Alberto Peruzzo, 2024. "Programmable high-dimensional Hamiltonian in a photonic waveguide array," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    7. Valeria Saggio & Carlos Errando-Herranz & Samuel Gyger & Christopher Panuski & Mihika Prabhu & Lorenzo Santis & Ian Christen & Dalia Ornelas-Huerta & Hamza Raniwala & Connor Gerlach & Marco Colangelo , 2024. "Cavity-enhanced single artificial atoms in silicon," Nature Communications, Nature, vol. 15(1), pages 1-6, December.
    8. Kaihang Lu & Zengqi Chen & Hao Chen & Wu Zhou & Zunyue Zhang & Hon Ki Tsang & Yeyu Tong, 2024. "Empowering high-dimensional optical fiber communications with integrated photonic processors," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    9. Mehmet Berkay On & Farshid Ashtiani & David Sanchez-Jacome & Daniel Perez-Lopez & S. J. Ben Yoo & Andrea Blanco-Redondo, 2024. "Programmable integrated photonics for topological Hamiltonians," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    10. Francesco Bova & Avi Goldfarb & Roger G. Melko, 2023. "Quantum Economic Advantage," Management Science, INFORMS, vol. 69(2), pages 1116-1126, February.
    11. Han Zhao & Bingzhao Li & Huan Li & Mo Li, 2022. "Enabling scalable optical computing in synthetic frequency dimension using integrated cavity acousto-optics," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    12. Miltiadis Moralis-Pegios & George Giamougiannis & Apostolos Tsakyridis & David Lazovsky & Nikos Pleros, 2024. "Perfect linear optics using silicon photonics," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    13. Steven Becker & Dirk Englund & Birgit Stiller, 2024. "An optoacoustic field-programmable perceptron for recurrent neural networks," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    14. Joel Siegel & Shinho Kim & Margaret Fortman & Chenghao Wan & Mikhail A. Kats & Philip W. C. Hon & Luke Sweatlock & Min Seok Jang & Victor Watson Brar, 2024. "Electrostatic steering of thermal emission with active metasurface control of delocalized modes," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    15. Ruobing Qian & Kevin C. Zhou & Jingkai Zhang & Christian Viehland & Al-Hafeez Dhalla & Joseph A. Izatt, 2022. "Video-rate high-precision time-frequency multiplexed 3D coherent ranging," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    16. Maoliang Wei & Kai Xu & Bo Tang & Junying Li & Yiting Yun & Peng Zhang & Yingchun Wu & Kangjian Bao & Kunhao Lei & Zequn Chen & Hui Ma & Chunlei Sun & Ruonan Liu & Ming Li & Lan Li & Hongtao Lin, 2024. "Monolithic back-end-of-line integration of phase change materials into foundry-manufactured silicon photonics," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    17. Anton Lukashchuk & Halil Kerim Yildirim & Andrea Bancora & Grigory Lihachev & Yang Liu & Zheru Qiu & Xinru Ji & Andrey Voloshin & Sunil A. Bhave & Edoardo Charbon & Tobias J. Kippenberg, 2024. "Photonic-electronic integrated circuit-based coherent LiDAR engine," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    18. Skavysh, Vladimir & Priazhkina, Sofia & Guala, Diego & Bromley, Thomas R., 2023. "Quantum monte carlo for economics: Stress testing and macroeconomic deep learning," Journal of Economic Dynamics and Control, Elsevier, vol. 153(C).
    19. Ali Najjar Amiri & Aycan Deniz Vit & Kazim Gorgulu & Emir Salih Magden, 2024. "Deep photonic network platform enabling arbitrary and broadband optical functionality," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    20. Kazuma Taki & Naoki Sekine & Kouhei Watanabe & Yuto Miyatake & Tomohiro Akazawa & Hiroya Sakumoto & Kasidit Toprasertpong & Shinichi Takagi & Mitsuru Takenaka, 2024. "Nonvolatile optical phase shift in ferroelectric hafnium zirconium oxide," Nature Communications, Nature, vol. 15(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42866-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.