IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-29177-9.html
   My bibliography  Save this article

Video-rate high-precision time-frequency multiplexed 3D coherent ranging

Author

Listed:
  • Ruobing Qian

    (Duke University)

  • Kevin C. Zhou

    (Duke University)

  • Jingkai Zhang

    (Duke University)

  • Christian Viehland

    (Duke University)

  • Al-Hafeez Dhalla

    (Duke University)

  • Joseph A. Izatt

    (Duke University
    Duke University Medical Center)

Abstract

Frequency-modulated continuous wave (FMCW) light detection and ranging (LiDAR) is an emerging 3D ranging technology that offers high sensitivity and ranging precision. Due to the limited bandwidth of digitizers and the speed limitations of beam steering using mechanical scanners, meter-scale FMCW LiDAR systems typically suffer from a low 3D frame rate, which greatly restricts their applications in real-time imaging of dynamic scenes. In this work, we report a high-speed FMCW based 3D imaging system, combining a grating for beam steering with a compressed time-frequency analysis approach for depth retrieval. We thoroughly investigate the localization accuracy and precision of our system both theoretically and experimentally. Finally, we demonstrate 3D imaging results of multiple static and moving objects, including a flexing human hand. The demonstrated technique achieves submillimeter localization accuracy over a tens-of-centimeter imaging range with an overall depth voxel acquisition rate of 7.6 MHz, enabling densely sampled 3D imaging at video rate.

Suggested Citation

  • Ruobing Qian & Kevin C. Zhou & Jingkai Zhang & Christian Viehland & Al-Hafeez Dhalla & Joseph A. Izatt, 2022. "Video-rate high-precision time-frequency multiplexed 3D coherent ranging," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29177-9
    DOI: 10.1038/s41467-022-29177-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-29177-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-29177-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jie Sun & Erman Timurdogan & Ami Yaacobi & Ehsan Shah Hosseini & Michael R. Watts, 2013. "Large-scale nanophotonic phased array," Nature, Nature, vol. 493(7431), pages 195-199, January.
    2. Johann Riemensberger & Anton Lukashchuk & Maxim Karpov & Wenle Weng & Erwan Lucas & Junqiu Liu & Tobias J. Kippenberg, 2020. "Massively parallel coherent laser ranging using a soliton microcomb," Nature, Nature, vol. 581(7807), pages 164-170, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dawoon Jeong & Hansol Jang & Min Uk Jung & Taeho Jeong & Hyunsoo Kim & Sanghyeok Yang & Janghyeon Lee & Chang-Seok Kim, 2024. "Spatio-spectral 4D coherent ranging using a flutter-wavelength-swept laser," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Anton Lukashchuk & Johann Riemensberger & Maxim Karpov & Junqiu Liu & Tobias J. Kippenberg, 2022. "Dual chirped microcomb based parallel ranging at megapixel-line rates," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen-Guang Wang & Wuyue Xu & Chong Li & Lili Shi & Junliang Jiang & Tingting Guo & Wen-Cheng Yue & Tianyu Li & Ping Zhang & Yang-Yang Lyu & Jiazheng Pan & Xiuhao Deng & Ying Dong & Xuecou Tu & Sining , 2024. "Integrated and DC-powered superconducting microcomb," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    2. Mingming Nie & Jonathan Musgrave & Kunpeng Jia & Jan Bartos & Shining Zhu & Zhenda Xie & Shu-Wei Huang, 2024. "Turnkey photonic flywheel in a microresonator-filtered laser," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    3. Mingming Nie & Kunpeng Jia & Yijun Xie & Shining Zhu & Zhenda Xie & Shu-Wei Huang, 2022. "Synthesized spatiotemporal mode-locking and photonic flywheel in multimode mesoresonators," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Okan Atalar & Raphaël Laer & Amir H. Safavi-Naeini & Amin Arbabian, 2022. "Longitudinal piezoelectric resonant photoelastic modulator for efficient intensity modulation at megahertz frequencies," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    5. Wenting Wang & Ping-Keng Lu & Abhinav Kumar Vinod & Deniz Turan & James F. McMillan & Hao Liu & Mingbin Yu & Dim-Lee Kwong & Mona Jarrahi & Chee Wei Wong, 2022. "Coherent terahertz radiation with 2.8-octave tunability through chip-scale photomixed microresonator optical parametric oscillation," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    6. H. H. Zhu & J. Zou & H. Zhang & Y. Z. Shi & S. B. Luo & N. Wang & H. Cai & L. X. Wan & B. Wang & X. D. Jiang & J. Thompson & X. S. Luo & X. H. Zhou & L. M. Xiao & W. Huang & L. Patrick & M. Gu & L. C., 2022. "Space-efficient optical computing with an integrated chip diffractive neural network," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    7. Mark Dong & Julia M. Boyle & Kevin J. Palm & Matthew Zimmermann & Alex Witte & Andrew J. Leenheer & Daniel Dominguez & Gerald Gilbert & Matt Eichenfield & Dirk Englund, 2023. "Synchronous micromechanically resonant programmable photonic circuits," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    8. Miles H. Anderson & Wenle Weng & Grigory Lihachev & Alexey Tikan & Junqiu Liu & Tobias J. Kippenberg, 2022. "Zero dispersion Kerr solitons in optical microresonators," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    9. Takaya Ochiai & Tomohiro Akazawa & Yuto Miyatake & Kei Sumita & Shuhei Ohno & Stéphane Monfray & Frederic Boeuf & Kasidit Toprasertpong & Shinichi Takagi & Mitsuru Takenaka, 2022. "Ultrahigh-responsivity waveguide-coupled optical power monitor for Si photonic circuits operating at near-infrared wavelengths," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    10. Grigory Lihachev & Wenle Weng & Junqiu Liu & Lin Chang & Joel Guo & Jijun He & Rui Ning Wang & Miles H. Anderson & Yang Liu & John E. Bowers & Tobias J. Kippenberg, 2022. "Platicon microcomb generation using laser self-injection locking," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    11. Xiaohua Feng & Yayao Ma & Liang Gao, 2022. "Compact light field photography towards versatile three-dimensional vision," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    12. Joel Siegel & Shinho Kim & Margaret Fortman & Chenghao Wan & Mikhail A. Kats & Philip W. C. Hon & Luke Sweatlock & Min Seok Jang & Victor Watson Brar, 2024. "Electrostatic steering of thermal emission with active metasurface control of delocalized modes," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    13. Gregory Moille & Edgar F. Perez & Jordan R. Stone & Ashutosh Rao & Xiyuan Lu & Tahmid Sami Rahman & Yanne K. Chembo & Kartik Srinivasan, 2021. "Ultra-broadband Kerr microcomb through soliton spectral translation," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    14. Ju Young Kim & Juho Park & Gregory R. Holdman & Jacob T. Heiden & Shinho Kim & Victor W. Brar & Min Seok Jang, 2022. "Full 2π tunable phase modulation using avoided crossing of resonances," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    15. Ileana-Cristina Benea-Chelmus & Maryna L. Meretska & Delwin L. Elder & Michele Tamagnone & Larry R. Dalton & Federico Capasso, 2021. "Electro-optic spatial light modulator from an engineered organic layer," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    16. Yang He & Raymond Lopez-Rios & Usman A. Javid & Jingwei Ling & Mingxiao Li & Shixin Xue & Kerry Vahala & Qiang Lin, 2023. "High-speed tunable microwave-rate soliton microcomb," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    17. Anton Lukashchuk & Johann Riemensberger & Maxim Karpov & Junqiu Liu & Tobias J. Kippenberg, 2022. "Dual chirped microcomb based parallel ranging at megapixel-line rates," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    18. Dawoon Jeong & Hansol Jang & Min Uk Jung & Taeho Jeong & Hyunsoo Kim & Sanghyeok Yang & Janghyeon Lee & Chang-Seok Kim, 2024. "Spatio-spectral 4D coherent ranging using a flutter-wavelength-swept laser," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    19. Chupao Lin & Juan Santo Domingo Peñaranda & Jolien Dendooven & Christophe Detavernier & David Schaubroeck & Nico Boon & Roel Baets & Nicolas Le Thomas, 2022. "UV photonic integrated circuits for far-field structured illumination autofluorescence microscopy," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    20. Saeed Sharif Azadeh & Jason C. C. Mak & Hong Chen & Xianshu Luo & Fu-Der Chen & Hongyao Chua & Frank Weiss & Christopher Alexiev & Andrei Stalmashonak & Youngho Jung & John N. Straguzzi & Guo-Qiang Lo, 2023. "Microcantilever-integrated photonic circuits for broadband laser beam scanning," Nature Communications, Nature, vol. 14(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29177-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.