IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-38260-8.html
   My bibliography  Save this article

Microcantilever-integrated photonic circuits for broadband laser beam scanning

Author

Listed:
  • Saeed Sharif Azadeh

    (Max Planck Institute of Microstructure Physics)

  • Jason C. C. Mak

    (University of Toronto, Department of Electrical and Computer Engineering)

  • Hong Chen

    (Max Planck Institute of Microstructure Physics)

  • Xianshu Luo

    (Advanced Micro Foundry Pte. Ltd.)

  • Fu-Der Chen

    (Max Planck Institute of Microstructure Physics
    University of Toronto, Department of Electrical and Computer Engineering)

  • Hongyao Chua

    (Advanced Micro Foundry Pte. Ltd.)

  • Frank Weiss

    (Max Planck Institute of Microstructure Physics)

  • Christopher Alexiev

    (University of Toronto, Department of Electrical and Computer Engineering)

  • Andrei Stalmashonak

    (Max Planck Institute of Microstructure Physics)

  • Youngho Jung

    (Max Planck Institute of Microstructure Physics)

  • John N. Straguzzi

    (Max Planck Institute of Microstructure Physics)

  • Guo-Qiang Lo

    (Advanced Micro Foundry Pte. Ltd.)

  • Wesley D. Sacher

    (Max Planck Institute of Microstructure Physics)

  • Joyce K. S. Poon

    (Max Planck Institute of Microstructure Physics
    University of Toronto, Department of Electrical and Computer Engineering)

Abstract

Laser beam scanning is central to many applications, including displays, microscopy, three-dimensional mapping, and quantum information. Reducing the scanners to microchip form factors has spurred the development of very-large-scale photonic integrated circuits of optical phased arrays and focal plane switched arrays. An outstanding challenge remains to simultaneously achieve a compact footprint, broad wavelength operation, and low power consumption. Here, we introduce a laser beam scanner that meets these requirements. Using microcantilevers embedded with silicon nitride nanophotonic circuitry, we demonstrate broadband, one- and two-dimensional steering of light with wavelengths from 410 nm to 700 nm. The microcantilevers have ultracompact ~0.1 mm2 areas, consume ~31 to 46 mW of power, are simple to control, and emit a single light beam. The microcantilevers are monolithically integrated in an active photonic platform on 200-mm silicon wafers. The microcantilever-integrated photonic circuits miniaturize and simplify light projectors to enable versatile, power-efficient, and broadband laser scanner microchips.

Suggested Citation

  • Saeed Sharif Azadeh & Jason C. C. Mak & Hong Chen & Xianshu Luo & Fu-Der Chen & Hongyao Chua & Frank Weiss & Christopher Alexiev & Andrei Stalmashonak & Youngho Jung & John N. Straguzzi & Guo-Qiang Lo, 2023. "Microcantilever-integrated photonic circuits for broadband laser beam scanning," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38260-8
    DOI: 10.1038/s41467-023-38260-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-38260-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-38260-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Karan K. Mehta & Chi Zhang & Maciej Malinowski & Thanh-Long Nguyen & Martin Stadler & Jonathan P. Home, 2020. "Integrated optical multi-ion quantum logic," Nature, Nature, vol. 586(7830), pages 533-537, October.
    2. Jie Sun & Erman Timurdogan & Ami Yaacobi & Ehsan Shah Hosseini & Michael R. Watts, 2013. "Large-scale nanophotonic phased array," Nature, Nature, vol. 493(7431), pages 195-199, January.
    3. R. J. Niffenegger & J. Stuart & C. Sorace-Agaskar & D. Kharas & S. Bramhavar & C. D. Bruzewicz & W. Loh & R. T. Maxson & R. McConnell & D. Reens & G. N. West & J. M. Sage & J. Chiaverini, 2020. "Integrated multi-wavelength control of an ion qubit," Nature, Nature, vol. 586(7830), pages 538-542, October.
    4. Xiaosheng Zhang & Kyungmok Kwon & Johannes Henriksson & Jianheng Luo & Ming C. Wu, 2022. "A large-scale microelectromechanical-systems-based silicon photonics LiDAR," Nature, Nature, vol. 603(7900), pages 253-258, March.
    5. Yiding Lin & Zheng Yong & Xianshu Luo & Saeed Sharif Azadeh & Jared C. Mikkelsen & Ankita Sharma & Hong Chen & Jason C. C. Mak & Patrick Guo-Qiang Lo & Wesley D. Sacher & Joyce K. S. Poon, 2022. "Monolithically integrated, broadband, high-efficiency silicon nitride-on-silicon waveguide photodetectors in a visible-light integrated photonics platform," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    6. Minh A. Tran & Chong Zhang & Theodore J. Morin & Lin Chang & Sabyasachi Barik & Zhiquan Yuan & Woonghee Lee & Glenn Kim & Aditya Malik & Zeyu Zhang & Joel Guo & Heming Wang & Boqiang Shen & Lue Wu & K, 2022. "Extending the spectrum of fully integrated photonics to submicrometre wavelengths," Nature, Nature, vol. 610(7930), pages 54-60, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mark Dong & Julia M. Boyle & Kevin J. Palm & Matthew Zimmermann & Alex Witte & Andrew J. Leenheer & Daniel Dominguez & Gerald Gilbert & Matt Eichenfield & Dirk Englund, 2023. "Synchronous micromechanically resonant programmable photonic circuits," Nature Communications, Nature, vol. 14(1), pages 1-8, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yiding Lin & Zheng Yong & Xianshu Luo & Saeed Sharif Azadeh & Jared C. Mikkelsen & Ankita Sharma & Hong Chen & Jason C. C. Mak & Patrick Guo-Qiang Lo & Wesley D. Sacher & Joyce K. S. Poon, 2022. "Monolithically integrated, broadband, high-efficiency silicon nitride-on-silicon waveguide photodetectors in a visible-light integrated photonics platform," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    2. Joel Siegel & Shinho Kim & Margaret Fortman & Chenghao Wan & Mikhail A. Kats & Philip W. C. Hon & Luke Sweatlock & Min Seok Jang & Victor Watson Brar, 2024. "Electrostatic steering of thermal emission with active metasurface control of delocalized modes," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    3. Joonhyuk Kwon & William J. Setzer & Michael Gehl & Nicholas Karl & Jay Van Der Wall & Ryan Law & Matthew G. Blain & Daniel Stick & Hayden J. McGuinness, 2024. "Multi-site integrated optical addressing of trapped ions," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Janderson R. Rodrigues & Utsav D. Dave & Aseema Mohanty & Xingchen Ji & Ipshita Datta & Shriddha Chaitanya & Euijae Shim & Ricardo Gutierrez-Jauregui & Vilson R. Almeida & Ana Asenjo-Garcia & Michal L, 2023. "All-dielectric scale invariant waveguide," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    5. Bogdan M. Mihalcea, 2024. "Solutions of the Mathieu–Hill Equation for a Trapped-Ion Harmonic Oscillator—A Qualitative Discussion," Mathematics, MDPI, vol. 12(19), pages 1-21, September.
    6. Dong Liang & Cheng Zhang & Pengfei Zhang & Song Liu & Huijie Li & Shouzhu Niu & Ryan Z. Rao & Li Zhao & Xiaochi Chen & Hanxuan Li & Yijie Huo, 2024. "Evolution of laser technology for automotive LiDAR, an industrial viewpoint," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    7. H. H. Zhu & J. Zou & H. Zhang & Y. Z. Shi & S. B. Luo & N. Wang & H. Cai & L. X. Wan & B. Wang & X. D. Jiang & J. Thompson & X. S. Luo & X. H. Zhou & L. M. Xiao & W. Huang & L. Patrick & M. Gu & L. C., 2022. "Space-efficient optical computing with an integrated chip diffractive neural network," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    8. Mark Dong & Julia M. Boyle & Kevin J. Palm & Matthew Zimmermann & Alex Witte & Andrew J. Leenheer & Daniel Dominguez & Gerald Gilbert & Matt Eichenfield & Dirk Englund, 2023. "Synchronous micromechanically resonant programmable photonic circuits," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    9. Xuguang Zhang & Zixuan Zhou & Yijun Guo & Minxue Zhuang & Warren Jin & Bitao Shen & Yujun Chen & Jiahui Huang & Zihan Tao & Ming Jin & Ruixuan Chen & Zhangfeng Ge & Zhou Fang & Ning Zhang & Yadong Liu, 2024. "High-coherence parallelization in integrated photonics," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    10. Takaya Ochiai & Tomohiro Akazawa & Yuto Miyatake & Kei Sumita & Shuhei Ohno & Stéphane Monfray & Frederic Boeuf & Kasidit Toprasertpong & Shinichi Takagi & Mitsuru Takenaka, 2022. "Ultrahigh-responsivity waveguide-coupled optical power monitor for Si photonic circuits operating at near-infrared wavelengths," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    11. Bing Chang & Teng Tan & Junting Du & Xinyue He & Yupei Liang & Zihan Liu & Chun Wang & Handing Xia & Zhaohui Wu & Jindong Wang & Kenneth K. Y. Wong & Tao Zhu & Lingjiang Kong & Bowen Li & Yunjiang Rao, 2024. "Dispersive Fourier transform based dual-comb ranging," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    12. Ruobing Qian & Kevin C. Zhou & Jingkai Zhang & Christian Viehland & Al-Hafeez Dhalla & Joseph A. Izatt, 2022. "Video-rate high-precision time-frequency multiplexed 3D coherent ranging," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    13. Dmitry Kazakov & Theodore P. Letsou & Maximilian Beiser & Yiyang Zhi & Nikola Opačak & Marco Piccardo & Benedikt Schwarz & Federico Capasso, 2024. "Active mid-infrared ring resonators," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    14. Ju Young Kim & Juho Park & Gregory R. Holdman & Jacob T. Heiden & Shinho Kim & Victor W. Brar & Min Seok Jang, 2022. "Full 2π tunable phase modulation using avoided crossing of resonances," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    15. Edgar F. Perez & Grégory Moille & Xiyuan Lu & Jordan Stone & Feng Zhou & Kartik Srinivasan, 2023. "High-performance Kerr microresonator optical parametric oscillator on a silicon chip," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    16. Zheng Li & Jin Xue & Marc Cea & Jaehwan Kim & Hao Nong & Daniel Chong & Khee Yong Lim & Elgin Quek & Rajeev J. Ram, 2023. "A sub-wavelength Si LED integrated in a CMOS platform," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    17. Spencer D. Fallek & Vikram S. Sandhu & Ryan A. McGill & John M. Gray & Holly N. Tinkey & Craig R. Clark & Kenton R. Brown, 2024. "Rapid exchange cooling with trapped ions," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    18. Daniel Pérez-López & Ana Gutierrez & David Sánchez & Aitor López-Hernández & Mikel Gutierrez & Erica Sánchez-Gomáriz & Juan Fernández & Alejandro Cruz & Alberto Quirós & Zhenyun Xie & Jesús Benitez & , 2024. "General-purpose programmable photonic processor for advanced radiofrequency applications," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    19. Sudip Shekhar & Wim Bogaerts & Lukas Chrostowski & John E. Bowers & Michael Hochberg & Richard Soref & Bhavin J. Shastri, 2024. "Roadmapping the next generation of silicon photonics," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38260-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.