IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-28702-0.html
   My bibliography  Save this article

Space-efficient optical computing with an integrated chip diffractive neural network

Author

Listed:
  • H. H. Zhu

    (Nanyang Technological University)

  • J. Zou

    (Nanyang Technological University)

  • H. Zhang

    (Nanyang Technological University)

  • Y. Z. Shi

    (Shanghai Jiao Tong University)

  • S. B. Luo

    (Nanyang Technological University)

  • N. Wang

    (A*STAR (Agency for Science, Technology and Research))

  • H. Cai

    (A*STAR (Agency for Science, Technology and Research))

  • L. X. Wan

    (Nanyang Technological University)

  • B. Wang

    (Nanyang Technological University)

  • X. D. Jiang

    (Nanyang Technological University)

  • J. Thompson

    (National University of Singapore)

  • X. S. Luo

    (Advanced Micro Foundry)

  • X. H. Zhou

    (Tsinghua University)

  • L. M. Xiao

    (Fudan University)

  • W. Huang

    (Chinese Academy of Sciences (CAS))

  • L. Patrick

    (Advanced Micro Foundry)

  • M. Gu

    (Nanyang Technological University)

  • L. C. Kwek

    (Nanyang Technological University
    National University of Singapore)

  • A. Q. Liu

    (Nanyang Technological University)

Abstract

Large-scale, highly integrated and low-power-consuming hardware is becoming progressively more important for realizing optical neural networks (ONNs) capable of advanced optical computing. Traditional experimental implementations need N2 units such as Mach-Zehnder interferometers (MZIs) for an input dimension N to realize typical computing operations (convolutions and matrix multiplication), resulting in limited scalability and consuming excessive power. Here, we propose the integrated diffractive optical network for implementing parallel Fourier transforms, convolution operations and application-specific optical computing using two ultracompact diffractive cells (Fourier transform operation) and only N MZIs. The footprint and energy consumption scales linearly with the input data dimension, instead of the quadratic scaling in the traditional ONN framework. A ~10-fold reduction in both footprint and energy consumption, as well as equal high accuracy with previous MZI-based ONNs was experimentally achieved for computations performed on the MNIST and Fashion-MNIST datasets. The integrated diffractive optical network (IDNN) chip demonstrates a promising avenue towards scalable and low-power-consumption optical computational chips for optical-artificial-intelligence.

Suggested Citation

  • H. H. Zhu & J. Zou & H. Zhang & Y. Z. Shi & S. B. Luo & N. Wang & H. Cai & L. X. Wan & B. Wang & X. D. Jiang & J. Thompson & X. S. Luo & X. H. Zhou & L. M. Xiao & W. Huang & L. Patrick & M. Gu & L. C., 2022. "Space-efficient optical computing with an integrated chip diffractive neural network," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28702-0
    DOI: 10.1038/s41467-022-28702-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-28702-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-28702-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jie Sun & Erman Timurdogan & Ami Yaacobi & Ehsan Shah Hosseini & Michael R. Watts, 2013. "Large-scale nanophotonic phased array," Nature, Nature, vol. 493(7431), pages 195-199, January.
    2. J. Feldmann & N. Youngblood & M. Karpov & H. Gehring & X. Li & M. Stappers & M. Gallo & X. Fu & A. Lukashchuk & A. S. Raja & J. Liu & C. D. Wright & A. Sebastian & T. J. Kippenberg & W. H. P. Pernice , 2021. "Publisher Correction: Parallel convolutional processing using an integrated photonic tensor core," Nature, Nature, vol. 591(7849), pages 13-13, March.
    3. Michael Kues & Christian Reimer & Piotr Roztocki & Luis Romero Cortés & Stefania Sciara & Benjamin Wetzel & Yanbing Zhang & Alfonso Cino & Sai T. Chu & Brent E. Little & David J. Moss & Lucia Caspani , 2017. "On-chip generation of high-dimensional entangled quantum states and their coherent control," Nature, Nature, vol. 546(7660), pages 622-626, June.
    4. Wim Bogaerts & Daniel Pérez & José Capmany & David A. B. Miller & Joyce Poon & Dirk Englund & Francesco Morichetti & Andrea Melloni, 2020. "Programmable photonic circuits," Nature, Nature, vol. 586(7828), pages 207-216, October.
    5. Gordon Wetzstein & Aydogan Ozcan & Sylvain Gigan & Shanhui Fan & Dirk Englund & Marin Soljačić & Cornelia Denz & David A. B. Miller & Demetri Psaltis, 2020. "Inference in artificial intelligence with deep optics and photonics," Nature, Nature, vol. 588(7836), pages 39-47, December.
    6. H. Zhang & M. Gu & X. D. Jiang & J. Thompson & H. Cai & S. Paesani & R. Santagati & A. Laing & Y. Zhang & M. H. Yung & Y. Z. Shi & F. K. Muhammad & G. Q. Lo & X. S. Luo & B. Dong & D. L. Kwong & L. C., 2021. "An optical neural chip for implementing complex-valued neural network," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    7. Kumel H. Kagalwala & Giovanni Giuseppe & Ayman F. Abouraddy & Bahaa E. A. Saleh, 2017. "Single-photon three-qubit quantum logic using spatial light modulators," Nature Communications, Nature, vol. 8(1), pages 1-11, December.
    8. J. Feldmann & N. Youngblood & M. Karpov & H. Gehring & X. Li & M. Stappers & M. Gallo & X. Fu & A. Lukashchuk & A. S. Raja & J. Liu & C. D. Wright & A. Sebastian & T. J. Kippenberg & W. H. P. Pernice , 2021. "Parallel convolutional processing using an integrated photonic tensor core," Nature, Nature, vol. 589(7840), pages 52-58, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wen Zhou & Bowei Dong & Nikolaos Farmakidis & Xuan Li & Nathan Youngblood & Kairan Huang & Yuhan He & C. David Wright & Wolfram H. P. Pernice & Harish Bhaskaran, 2023. "In-memory photonic dot-product engine with electrically programmable weight banks," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Xiangyan Meng & Guojie Zhang & Nuannuan Shi & Guangyi Li & José Azaña & José Capmany & Jianping Yao & Yichen Shen & Wei Li & Ninghua Zhu & Ming Li, 2023. "Compact optical convolution processing unit based on multimode interference," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Jingtian Hu & Deniz Mengu & Dimitrios C. Tzarouchis & Brian Edwards & Nader Engheta & Aydogan Ozcan, 2024. "Diffractive optical computing in free space," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    4. Xinxin Gao & Ze Gu & Qian Ma & Bao Jie Chen & Kam-Man Shum & Wen Yi Cui & Jian Wei You & Tie Jun Cui & Chi Hou Chan, 2024. "Terahertz spoof plasmonic neural network for diffractive information recognition and processing," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Yang Shi & Junyu Ren & Guanyu Chen & Wei Liu & Chuqi Jin & Xiangyu Guo & Yu Yu & Xinliang Zhang, 2022. "Nonlinear germanium-silicon photodiode for activation and monitoring in photonic neuromorphic networks," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    6. Xiaoyun Yuan & Yong Wang & Zhihao Xu & Tiankuang Zhou & Lu Fang, 2023. "Training large-scale optoelectronic neural networks with dual-neuron optical-artificial learning," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    7. Qi Han & Jun Wang & Shuangshuang Tian & Shen Hu & Xuefeng Wu & Rongxu Bai & Haibin Zhao & David W. Zhang & Qingqing Sun & Li Ji, 2024. "Inorganic perovskite-based active multifunctional integrated photonic devices," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Han Zhao & Bingzhao Li & Huan Li & Mo Li, 2022. "Enabling scalable optical computing in synthetic frequency dimension using integrated cavity acousto-optics," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    2. Xiangyan Meng & Guojie Zhang & Nuannuan Shi & Guangyi Li & José Azaña & José Capmany & Jianping Yao & Yichen Shen & Wei Li & Ninghua Zhu & Ming Li, 2023. "Compact optical convolution processing unit based on multimode interference," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Miltiadis Moralis-Pegios & George Giamougiannis & Apostolos Tsakyridis & David Lazovsky & Nikos Pleros, 2024. "Perfect linear optics using silicon photonics," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    4. Steven Becker & Dirk Englund & Birgit Stiller, 2024. "An optoacoustic field-programmable perceptron for recurrent neural networks," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    5. Wen Zhou & Bowei Dong & Nikolaos Farmakidis & Xuan Li & Nathan Youngblood & Kairan Huang & Yuhan He & C. David Wright & Wolfram H. P. Pernice & Harish Bhaskaran, 2023. "In-memory photonic dot-product engine with electrically programmable weight banks," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    6. Ali Najjar Amiri & Aycan Deniz Vit & Kazim Gorgulu & Emir Salih Magden, 2024. "Deep photonic network platform enabling arbitrary and broadband optical functionality," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    7. Junwei Cheng & Chaoran Huang & Jialong Zhang & Bo Wu & Wenkai Zhang & Xinyu Liu & Jiahui Zhang & Yiyi Tang & Hailong Zhou & Qiming Zhang & Min Gu & Jianji Dong & Xinliang Zhang, 2024. "Multimodal deep learning using on-chip diffractive optics with in situ training capability," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    8. Bowen Bai & Qipeng Yang & Haowen Shu & Lin Chang & Fenghe Yang & Bitao Shen & Zihan Tao & Jing Wang & Shaofu Xu & Weiqiang Xie & Weiwen Zou & Weiwei Hu & John E. Bowers & Xingjun Wang, 2023. "Microcomb-based integrated photonic processing unit," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    9. Guangwei Cong & Noritsugu Yamamoto & Takashi Inoue & Yuriko Maegami & Morifumi Ohno & Shota Kita & Shu Namiki & Koji Yamada, 2022. "On-chip bacterial foraging training in silicon photonic circuits for projection-enabled nonlinear classification," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    10. Minjia Chen & Yizhi Wang & Chunhui Yao & Adrian Wonfor & Shuai Yang & Richard Penty & Qixiang Cheng, 2024. "I/O-efficient iterative matrix inversion with photonic integrated circuits," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    11. Maoliang Wei & Kai Xu & Bo Tang & Junying Li & Yiting Yun & Peng Zhang & Yingchun Wu & Kangjian Bao & Kunhao Lei & Zequn Chen & Hui Ma & Chunlei Sun & Ruonan Liu & Ming Li & Lan Li & Hongtao Lin, 2024. "Monolithic back-end-of-line integration of phase change materials into foundry-manufactured silicon photonics," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    12. G. Mourgias-Alexandris & M. Moralis-Pegios & A. Tsakyridis & S. Simos & G. Dabos & A. Totovic & N. Passalis & M. Kirtas & T. Rutirawut & F. Y. Gardes & A. Tefas & N. Pleros, 2022. "Noise-resilient and high-speed deep learning with coherent silicon photonics," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    13. Chen-Guang Wang & Wuyue Xu & Chong Li & Lili Shi & Junliang Jiang & Tingting Guo & Wen-Cheng Yue & Tianyu Li & Ping Zhang & Yang-Yang Lyu & Jiazheng Pan & Xiuhao Deng & Ying Dong & Xuecou Tu & Sining , 2024. "Integrated and DC-powered superconducting microcomb," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    14. Jiawei Lv & Jeong Hyun Han & Geonho Han & Seongmin An & Seung Ju Kim & Ryeong Myeong Kim & Jung‐El Ryu & Rena Oh & Hyuckjin Choi & In Han Ha & Yoon Ho Lee & Minje Kim & Gyeong-Su Park & Ho Won Jang & , 2024. "Spatiotemporally modulated full-polarized light emission for multiplexed optical encryption," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    15. Xiaopeng Feng & Yuhong He & Wei Qu & Jinmei Song & Wanting Pan & Mingrui Tan & Bai Yang & Haotong Wei, 2022. "Spray-coated perovskite hemispherical photodetector featuring narrow-band and wide-angle imaging," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    16. Wenting Wang & Ping-Keng Lu & Abhinav Kumar Vinod & Deniz Turan & James F. McMillan & Hao Liu & Mingbin Yu & Dim-Lee Kwong & Mona Jarrahi & Chee Wei Wong, 2022. "Coherent terahertz radiation with 2.8-octave tunability through chip-scale photomixed microresonator optical parametric oscillation," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    17. Bitao Shen & Haowen Shu & Weiqiang Xie & Ruixuan Chen & Zhi Liu & Zhangfeng Ge & Xuguang Zhang & Yimeng Wang & Yunhao Zhang & Buwen Cheng & Shaohua Yu & Lin Chang & Xingjun Wang, 2023. "Harnessing microcomb-based parallel chaos for random number generation and optical decision making," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    18. Mark Dong & Julia M. Boyle & Kevin J. Palm & Matthew Zimmermann & Alex Witte & Andrew J. Leenheer & Daniel Dominguez & Gerald Gilbert & Matt Eichenfield & Dirk Englund, 2023. "Synchronous micromechanically resonant programmable photonic circuits," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    19. Xuan-Kun Li & Jian-Xu Ma & Xiang-Yu Li & Jun-Jie Hu & Chuan-Yang Ding & Feng-Kai Han & Xiao-Min Guo & Xi Tan & Xian-Min Jin, 2024. "High-efficiency reinforcement learning with hybrid architecture photonic integrated circuit," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    20. Xuguang Zhang & Zixuan Zhou & Yijun Guo & Minxue Zhuang & Warren Jin & Bitao Shen & Yujun Chen & Jiahui Huang & Zihan Tao & Ming Jin & Ruixuan Chen & Zhangfeng Ge & Zhou Fang & Ning Zhang & Yadong Liu, 2024. "High-coherence parallelization in integrated photonics," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28702-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.