IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-42645-0.html
   My bibliography  Save this article

The practice of reaction window in an electrocatalytic on-chip microcell

Author

Listed:
  • Hang Xia

    (Hunan University)

  • Xiaoru Sang

    (Hunan University)

  • Zhiwen Shu

    (Hunan University)

  • Zude Shi

    (Hunan University)

  • Zefen Li

    (University of Electronic Science and Technology of China)

  • Shasha Guo

    (Nanyang Technological University)

  • Xiuyun An

    (Hunan University)

  • Caitian Gao

    (Hunan University
    Hunan University)

  • Fucai Liu

    (University of Electronic Science and Technology of China)

  • Huigao Duan

    (Hunan University
    Hunan University)

  • Zheng Liu

    (Nanyang Technological University)

  • Yongmin He

    (Hunan University
    Hunan University)

Abstract

To enhance the efficiency of catalysis, it is crucial to comprehend the behavior of individual nanowires/nanosheets. A developed on-chip microcell facilitates this study by creating a reaction window that exposes the catalyst region of interest. However, this technology’s potential application is limited due to frequently-observed variations in data between different cells. In this study, we identify a conductance problem in the reaction windows of non-metallic catalysts as the cause of this issue. We investigate this problem using in-situ electronic/electrochemical measurements and atom-thin nanosheets as model catalysts. Our findings show that a full-open window, which exposes the entire catalyst channel, allows for efficient modulation of conductance, which is ten times higher than a half-open window. This often-overlooked factor has the potential to significantly improve the conductivity of non-metallic catalysts during the reaction process. After examining tens of cells, we develop a vertical microcell strategy to eliminate the conductance issue and enhance measurement reproducibility. Our study offers guidelines for conducting reliable microcell measurements on non-metallic single nanowire/nanosheet catalysts.

Suggested Citation

  • Hang Xia & Xiaoru Sang & Zhiwen Shu & Zude Shi & Zefen Li & Shasha Guo & Xiuyun An & Caitian Gao & Fucai Liu & Huigao Duan & Zheng Liu & Yongmin He, 2023. "The practice of reaction window in an electrocatalytic on-chip microcell," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42645-0
    DOI: 10.1038/s41467-023-42645-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-42645-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-42645-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yuan Liu & Jian Guo & Enbo Zhu & Lei Liao & Sung-Joon Lee & Mengning Ding & Imran Shakir & Vincent Gambin & Yu Huang & Xiangfeng Duan, 2018. "Approaching the Schottky–Mott limit in van der Waals metal–semiconductor junctions," Nature, Nature, vol. 557(7707), pages 696-700, May.
    2. Pin-Chun Shen & Cong Su & Yuxuan Lin & Ang-Sheng Chou & Chao-Ching Cheng & Ji-Hoon Park & Ming-Hui Chiu & Ang-Yu Lu & Hao-Ling Tang & Mohammad Mahdi Tavakoli & Gregory Pitner & Xiang Ji & Zhengyang Ca, 2021. "Ultralow contact resistance between semimetal and monolayer semiconductors," Nature, Nature, vol. 593(7858), pages 211-217, May.
    3. Mengning Ding & Qiyuan He & Gongming Wang & Hung-Chieh Cheng & Yu Huang & Xiangfeng Duan, 2015. "An on-chip electrical transport spectroscopy approach for in situ monitoring electrochemical interfaces," Nature Communications, Nature, vol. 6(1), pages 1-9, November.
    4. Yongmin He & Pengyi Tang & Zhili Hu & Qiyuan He & Chao Zhu & Luqing Wang & Qingsheng Zeng & Prafful Golani & Guanhui Gao & Wei Fu & Zhiqi Huang & Caitian Gao & Juan Xia & Xingli Wang & Xuewen Wang & C, 2020. "Engineering grain boundaries at the 2D limit for the hydrogen evolution reaction," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    5. Jie Xu & Gonglei Shao & Xuan Tang & Fang Lv & Haiyan Xiang & Changfei Jing & Song Liu & Sheng Dai & Yanguang Li & Jun Luo & Zhen Zhou, 2022. "Frenkel-defected monolayer MoS2 catalysts for efficient hydrogen evolution," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    6. Peiyao Wang & Mengyu Yan & Jiashen Meng & Gengping Jiang & Longbing Qu & Xuelei Pan & Jefferson Zhe Liu & Liqiang Mai, 2017. "Oxygen evolution reaction dynamics monitored by an individual nanosheet-based electronic circuit," Nature Communications, Nature, vol. 8(1), pages 1-7, December.
    7. Heping Xie & Zhiyu Zhao & Tao Liu & Yifan Wu & Cheng Lan & Wenchuan Jiang & Liangyu Zhu & Yunpeng Wang & Dongsheng Yang & Zongping Shao, 2022. "A membrane-based seawater electrolyser for hydrogen generation," Nature, Nature, vol. 612(7941), pages 673-678, December.
    8. Kang Jiang & Min Luo & Zhixiao Liu & Ming Peng & Dechao Chen & Ying-Rui Lu & Ting-Shan Chan & Frank M. F. Groot & Yongwen Tan, 2021. "Rational strain engineering of single-atom ruthenium on nanoporous MoS2 for highly efficient hydrogen evolution," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    9. Jianqi Zhu & Zhi-Chang Wang & Huijia Dai & Qinqin Wang & Rong Yang & Hua Yu & Mengzhou Liao & Jing Zhang & Wei Chen & Zheng Wei & Na Li & Luojun Du & Dongxia Shi & Wenlong Wang & Lixin Zhang & Ying Ji, 2019. "Boundary activated hydrogen evolution reaction on monolayer MoS2," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
    10. Yanghang Pan & Xinzhu Wang & Weiyang Zhang & Lingyu Tang & Zhangyan Mu & Cheng Liu & Bailin Tian & Muchun Fei & Yamei Sun & Huanhuan Su & Libo Gao & Peng Wang & Xiangfeng Duan & Jing Ma & Mengning Din, 2022. "Boosting the performance of single-atom catalysts via external electric field polarization," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    11. Zhangyan Mu & Na Han & Dan Xu & Bailin Tian & Fangyuan Wang & Yiqi Wang & Yamei Sun & Cheng Liu & Panke Zhang & Xuejun Wu & Yanguang Li & Mengning Ding, 2022. "Critical role of hydrogen sorption kinetics in electrocatalytic CO2 reduction revealed by on-chip in situ transport investigations," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jie Xu & Xiong-Xiong Xue & Gonglei Shao & Changfei Jing & Sheng Dai & Kun He & Peipei Jia & Shun Wang & Yifei Yuan & Jun Luo & Jun Lu, 2023. "Atomic-level polarization in electric fields of defects for electrocatalysis," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Lu Li & Qinqin Wang & Fanfan Wu & Qiaoling Xu & Jinpeng Tian & Zhiheng Huang & Qinghe Wang & Xuan Zhao & Qinghua Zhang & Qinkai Fan & Xiuzhen Li & Yalin Peng & Yangkun Zhang & Kunshan Ji & Aomiao Zhi , 2024. "Epitaxy of wafer-scale single-crystal MoS2 monolayer via buffer layer control," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Jie Xu & Gonglei Shao & Xuan Tang & Fang Lv & Haiyan Xiang & Changfei Jing & Song Liu & Sheng Dai & Yanguang Li & Jun Luo & Zhen Zhou, 2022. "Frenkel-defected monolayer MoS2 catalysts for efficient hydrogen evolution," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    4. Maosong Xie & Yueyang Jia & Chen Nie & Zuheng Liu & Alvin Tang & Shiquan Fan & Xiaoyao Liang & Li Jiang & Zhezhi He & Rui Yang, 2023. "Monolithic 3D integration of 2D transistors and vertical RRAMs in 1T–4R structure for high-density memory," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Gonglei Shao & Changfei Jing & Zhinan Ma & Yuanyuan Li & Weiqi Dang & Dong Guo & Manman Wu & Song Liu & Xu Zhang & Kun He & Yifei Yuan & Jun Luo & Sheng Dai & Jie Xu & Zhen Zhou, 2024. "Dynamic coordination engineering of 2D PhenPtCl2 nanosheets for superior hydrogen evolution," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    6. Xuanzhang Li & Yang Wei & Zhijie Wang & Ya Kong & Yipeng Su & Gaotian Lu & Zhen Mei & Yi Su & Guangqi Zhang & Jianhua Xiao & Liang Liang & Jia Li & Qunqing Li & Jin Zhang & Shoushan Fan & Yuegang Zhan, 2023. "One-dimensional semimetal contacts to two-dimensional semiconductors," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    7. Yaoqiang Zhou & Lei Tong & Zefeng Chen & Li Tao & Yue Pang & Jian-Bin Xu, 2023. "Contact-engineered reconfigurable two-dimensional Schottky junction field-effect transistor with low leakage currents," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    8. Yanghang Pan & Xinzhu Wang & Weiyang Zhang & Lingyu Tang & Zhangyan Mu & Cheng Liu & Bailin Tian & Muchun Fei & Yamei Sun & Huanhuan Su & Libo Gao & Peng Wang & Xiangfeng Duan & Jing Ma & Mengning Din, 2022. "Boosting the performance of single-atom catalysts via external electric field polarization," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    9. Xiangbin Cai & Zefei Wu & Xu Han & Yong Chen & Shuigang Xu & Jiangxiazi Lin & Tianyi Han & Pingge He & Xuemeng Feng & Liheng An & Run Shi & Jingwei Wang & Zhehan Ying & Yuan Cai & Mengyuan Hua & Junwe, 2022. "Bridging the gap between atomically thin semiconductors and metal leads," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    10. Lingan Kong & Ruixia Wu & Yang Chen & Ying Huangfu & Liting Liu & Wei Li & Donglin Lu & Quanyang Tao & Wenjing Song & Wanying Li & Zheyi Lu & Xiao Liu & Yunxin Li & Zhiwei Li & Wei Tong & Shuimei Ding, 2023. "Wafer-scale and universal van der Waals metal semiconductor contact," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    11. Jun Yu & Han Wang & Fuwei Zhuge & Zirui Chen & Man Hu & Xiang Xu & Yuhui He & Ying Ma & Xiangshui Miao & Tianyou Zhai, 2023. "Simultaneously ultrafast and robust two-dimensional flash memory devices based on phase-engineered edge contacts," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    12. Seunguk Song & Aram Yoon & Sora Jang & Jason Lynch & Jihoon Yang & Juwon Han & Myeonggi Choe & Young Ho Jin & Cindy Yueli Chen & Yeryun Cheon & Jinsung Kwak & Changwook Jeong & Hyeonsik Cheong & Deep , 2023. "Fabrication of p-type 2D single-crystalline transistor arrays with Fermi-level-tuned van der Waals semimetal electrodes," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    13. Hao Shi & Tanyuan Wang & Jianyun Liu & Weiwei Chen & Shenzhou Li & Jiashun Liang & Shuxia Liu & Xuan Liu & Zhao Cai & Chao Wang & Dong Su & Yunhui Huang & Lior Elbaz & Qing Li, 2023. "A sodium-ion-conducted asymmetric electrolyzer to lower the operation voltage for direct seawater electrolysis," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    14. Ruiling Zhang & Yaozhou Li & Xuan Zhou & Ao Yu & Qi Huang & Tingting Xu & Longtao Zhu & Ping Peng & Shuyan Song & Luis Echegoyen & Fang-Fang Li, 2023. "Single-atomic platinum on fullerene C60 surfaces for accelerated alkaline hydrogen evolution," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    15. Subir Ghosh & Andrew Pannone & Dipanjan Sen & Akshay Wali & Harikrishnan Ravichandran & Saptarshi Das, 2023. "An all 2D bio-inspired gustatory circuit for mimicking physiology and psychology of feeding behavior," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    16. John Daniel & Zheng Sun & Xuejian Zhang & Yuanqiu Tan & Neil Dilley & Zhihong Chen & Joerg Appenzeller, 2024. "Experimental demonstration of an on-chip p-bit core based on stochastic magnetic tunnel junctions and 2D MoS2 transistors," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    17. Haohao Gu & Kaixin Meng & Ruowei Yuan & Siyang Xiao & Yuying Shan & Rui Zhu & Yajun Deng & Xiaojin Luo & Ruijie Li & Lei Liu & Xu Chen & Yuping Shi & Xiaodong Wang & Chuanhua Duan & Hao Wang, 2024. "Rewritable printing of ionic liquid nanofilm utilizing focused ion beam induced film wetting," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    18. Corinna Köpke & Jennifer Mielniczek & Alexander Stolz, 2023. "Testing Resilience Aspects of Operation Options for Offshore Wind Farms beyond the End-of-Life," Energies, MDPI, vol. 16(12), pages 1-12, June.
    19. Yongheng Zhou & Xin Zhou & Xiang-Long Yu & Zihan Liang & Xiaoxu Zhao & Taihong Wang & Jinshui Miao & Xiaolong Chen, 2024. "Giant intrinsic photovoltaic effect in one-dimensional van der Waals grain boundaries," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    20. Zheyi Lu & Yang Chen & Weiqi Dang & Lingan Kong & Quanyang Tao & Likuan Ma & Donglin Lu & Liting Liu & Wanying Li & Zhiwei Li & Xiao Liu & Yiliu Wang & Xidong Duan & Lei Liao & Yuan Liu, 2023. "Wafer-scale high-κ dielectrics for two-dimensional circuits via van der Waals integration," Nature Communications, Nature, vol. 14(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42645-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.