IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-44717-1.html
   My bibliography  Save this article

Dynamic coordination engineering of 2D PhenPtCl2 nanosheets for superior hydrogen evolution

Author

Listed:
  • Gonglei Shao

    (Zhengzhou University)

  • Changfei Jing

    (Wenzhou University
    East China University of Science and Technology)

  • Zhinan Ma

    (North University of China)

  • Yuanyuan Li

    (Henan University of Technology)

  • Weiqi Dang

    (Nanjing University)

  • Dong Guo

    (Zhengzhou University)

  • Manman Wu

    (Zhengzhou University)

  • Song Liu

    (Hunan University)

  • Xu Zhang

    (Zhengzhou University)

  • Kun He

    (Wenzhou University)

  • Yifei Yuan

    (Wenzhou University)

  • Jun Luo

    (University of Electronic Science and Technology of China)

  • Sheng Dai

    (East China University of Science and Technology)

  • Jie Xu

    (Wenzhou University)

  • Zhen Zhou

    (Zhengzhou University)

Abstract

Exploring the dynamic structural evolution of electrocatalysts during reactions represents a fundamental objective in the realm of electrocatalytic mechanism research. In pursuit of this objective, we synthesized PhenPtCl2 nanosheets, revealing a N2-Pt-Cl2 coordination structure through various characterization techniques. Remarkably, the electrocatalytic performance of these PhenPtCl2 nanosheets for hydrogen evolution reaction (HER) surpasses that of the commercial Pt/C catalyst across the entire pH range. Furthermore, our discovery of the dynamic coordination changes occurring in the N2-Pt-Cl2 active sites during the electrocatalytic process, as clarified through in situ Raman and X-ray photoelectron spectroscopy, is particularly noteworthy. These changes transition from Phen-Pt-Cl2 to Phen-Pt-Cl and ultimately to Phen-Pt. The Phen-Pt intermediate plays a pivotal role in the electrocatalytic HER, dynamically coordinating with Cl- ions in the electrolyte. Additionally, the unsaturated, two-coordinated Pt within Phen-Pt provides additional space and electrons to enhance both H+ adsorption and H2 evolution. This research illuminates the intricate dynamic coordination evolution and structural adaptability of PhenPtCl2 nanosheets, firmly establishing them as a promising candidate for efficient and tunable electrocatalysts.

Suggested Citation

  • Gonglei Shao & Changfei Jing & Zhinan Ma & Yuanyuan Li & Weiqi Dang & Dong Guo & Manman Wu & Song Liu & Xu Zhang & Kun He & Yifei Yuan & Jun Luo & Sheng Dai & Jie Xu & Zhen Zhou, 2024. "Dynamic coordination engineering of 2D PhenPtCl2 nanosheets for superior hydrogen evolution," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-44717-1
    DOI: 10.1038/s41467-024-44717-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-44717-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-44717-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Qi Hu & Keru Gao & Xiaodeng Wang & Hongju Zheng & Jianyong Cao & Lingren Mi & Qihua Huo & Hengpan Yang & Jianhong Liu & Chuanxin He, 2022. "Subnanometric Ru clusters with upshifted D band center improve performance for alkaline hydrogen evolution reaction," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Niancai Cheng & Samantha Stambula & Da Wang & Mohammad Norouzi Banis & Jian Liu & Adam Riese & Biwei Xiao & Ruying Li & Tsun-Kong Sham & Li-Min Liu & Gianluigi A. Botton & Xueliang Sun, 2016. "Platinum single-atom and cluster catalysis of the hydrogen evolution reaction," Nature Communications, Nature, vol. 7(1), pages 1-9, December.
    3. Jie Xu & Gonglei Shao & Xuan Tang & Fang Lv & Haiyan Xiang & Changfei Jing & Song Liu & Sheng Dai & Yanguang Li & Jun Luo & Zhen Zhou, 2022. "Frenkel-defected monolayer MoS2 catalysts for efficient hydrogen evolution," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    4. Zhenming Cao & Qiaoli Chen & Jiawei Zhang & Huiqi Li & Yaqi Jiang & Shouyu Shen & Gang Fu & Bang-an Lu & Zhaoxiong Xie & Lansun Zheng, 2017. "Platinum-nickel alloy excavated nano-multipods with hexagonal close-packed structure and superior activity towards hydrogen evolution reaction," Nature Communications, Nature, vol. 8(1), pages 1-7, April.
    5. Chenyu Li & Zhijie Wang & Mingda Liu & Enze Wang & Bolun Wang & Longlong Xu & Kaili Jiang & Shoushan Fan & Yinghui Sun & Jia Li & Kai Liu, 2022. "Ultrafast self-heating synthesis of robust heterogeneous nanocarbides for high current density hydrogen evolution reaction," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    6. Charlotte Vogt & Florian Meirer & Matteo Monai & Esther Groeneveld & Davide Ferri & Rutger A. Santen & Maarten Nachtegaal & Raymond R. Unocic & Anatoly I. Frenkel & Bert M. Weckhuysen, 2021. "Dynamic restructuring of supported metal nanoparticles and its implications for structure insensitive catalysis," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    7. Fei-Yang Yu & Zhong-Ling Lang & Li-Ying Yin & Kun Feng & Yu-Jian Xia & Hua-Qiao Tan & Hao-Tian Zhu & Jun Zhong & Zhen-Hui Kang & Yang-Guang Li, 2020. "Pt-O bond as an active site superior to Pt0 in hydrogen evolution reaction," Nature Communications, Nature, vol. 11(1), pages 1-7, December.
    8. Jianqi Zhu & Zhi-Chang Wang & Huijia Dai & Qinqin Wang & Rong Yang & Hua Yu & Mengzhou Liao & Jing Zhang & Wei Chen & Zheng Wei & Na Li & Luojun Du & Dongxia Shi & Wenlong Wang & Lixin Zhang & Ying Ji, 2019. "Boundary activated hydrogen evolution reaction on monolayer MoS2," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
    9. Qiangmin Yu & Zhiyuan Zhang & Siyao Qiu & Yuting Luo & Zhibo Liu & Fengning Yang & Heming Liu & Shiyu Ge & Xiaolong Zou & Baofu Ding & Wencai Ren & Hui-Ming Cheng & Chenghua Sun & Bilu Liu, 2021. "A Ta-TaS2 monolith catalyst with robust and metallic interface for superior hydrogen evolution," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    10. Yishang Wu & Xiaojing Liu & Dongdong Han & Xianyin Song & Lei Shi & Yao Song & Shuwen Niu & Yufang Xie & Jinyan Cai & Shaoyang Wu & Jian Kang & Jianbin Zhou & Zhiyan Chen & Xusheng Zheng & Xiangheng X, 2018. "Electron density modulation of NiCo2S4 nanowires by nitrogen incorporation for highly efficient hydrogen evolution catalysis," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jie Xu & Xiong-Xiong Xue & Gonglei Shao & Changfei Jing & Sheng Dai & Kun He & Peipei Jia & Shun Wang & Yifei Yuan & Jun Luo & Jun Lu, 2023. "Atomic-level polarization in electric fields of defects for electrocatalysis," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Jie Dai & Yinlong Zhu & Yu Chen & Xue Wen & Mingce Long & Xinhao Wu & Zhiwei Hu & Daqin Guan & Xixi Wang & Chuan Zhou & Qian Lin & Yifei Sun & Shih-Chang Weng & Huanting Wang & Wei Zhou & Zongping Sha, 2022. "Hydrogen spillover in complex oxide multifunctional sites improves acidic hydrogen evolution electrocatalysis," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Tianyu Zhang & Jing Jin & Junmei Chen & Yingyan Fang & Xu Han & Jiayi Chen & Yaping Li & Yu Wang & Junfeng Liu & Lei Wang, 2022. "Pinpointing the axial ligand effect on platinum single-atom-catalyst towards efficient alkaline hydrogen evolution reaction," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    4. Hang Xia & Xiaoru Sang & Zhiwen Shu & Zude Shi & Zefen Li & Shasha Guo & Xiuyun An & Caitian Gao & Fucai Liu & Huigao Duan & Zheng Liu & Yongmin He, 2023. "The practice of reaction window in an electrocatalytic on-chip microcell," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Yilin Deng & Wei Lai & Bin Xu, 2020. "A Mini Review on Doped Nickel-Based Electrocatalysts for Hydrogen Evolution Reaction," Energies, MDPI, vol. 13(18), pages 1-17, September.
    6. Bogdan-Ovidiu Taranu & Eugenia Fagadar-Cosma & Paula Sfirloaga & Maria Poienar, 2023. "Free-Base Porphyrin Aggregates Combined with Nickel Phosphite for Enhanced Alkaline Hydrogen Evolution," Energies, MDPI, vol. 16(3), pages 1-14, January.
    7. Heming Liu & Ruikuan Xie & Yuting Luo & Zhicheng Cui & Qiangmin Yu & Zhiqiang Gao & Zhiyuan Zhang & Fengning Yang & Xin Kang & Shiyu Ge & Shaohai Li & Xuefeng Gao & Guoliang Chai & Le Liu & Bilu Liu, 2022. "Dual interfacial engineering of a Chevrel phase electrode material for stable hydrogen evolution at 2500 mA cm−2," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    8. Ruiling Zhang & Yaozhou Li & Xuan Zhou & Ao Yu & Qi Huang & Tingting Xu & Longtao Zhu & Ping Peng & Shuyan Song & Luis Echegoyen & Fang-Fang Li, 2023. "Single-atomic platinum on fullerene C60 surfaces for accelerated alkaline hydrogen evolution," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    9. Kai Liu & Hao Yang & Yilan Jiang & Zhaojun Liu & Shumeng Zhang & Zhixue Zhang & Zhun Qiao & Yiming Lu & Tao Cheng & Osamu Terasaki & Qing Zhang & Chuanbo Gao, 2023. "Coherent hexagonal platinum skin on nickel nanocrystals for enhanced hydrogen evolution activity," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    10. Rachela G. Milazzo & Stefania M. S. Privitera & Silvia Scalese & Salvatore A. Lombardo, 2019. "Effect of Morphology and Mechanical Stability of Nanometric Platinum Layer on Nickel Foam for Hydrogen Evolution Reaction," Energies, MDPI, vol. 12(16), pages 1-11, August.
    11. Prahlad K. Routh & Evgeniy Redekop & Sebastian Prodinger & Jessi E. S. Hoeven & Kang Rui Garrick Lim & Joanna Aizenberg & Maarten Nachtegaal & Adam H. Clark & Anatoly I. Frenkel, 2024. "Restructuring dynamics of surface species in bimetallic nanoparticles probed by modulation excitation spectroscopy," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    12. Khandelwal, Akshat & Maarisetty, Dileep & Baral, Saroj Sundar, 2022. "Fundamentals and application of single-atom photocatalyst in sustainable energy and environmental applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    13. Ganceng Yang & Yanqing Jiao & Haijing Yan & Ying Xie & Chungui Tian & Aiping Wu & Yu Wang & Honggang Fu, 2022. "Unraveling the mechanism for paired electrocatalysis of organics with water as a feedstock," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    14. Hengjia Wang & Ying Qin & Yu Wu & Yiwei Qiu & Ling Ling & Qie Fang & Canglong Wang & Liuyong Hu & Wenling Gu & Chengzhou Zhu, 2024. "Pd hydride metallene aerogels with lattice hydrogen participation for efficient hydrogen evolution reaction," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    15. Xiaowei Shi & Chao Dai & Xin Wang & Jiayue Hu & Junying Zhang & Lingxia Zheng & Liang Mao & Huajun Zheng & Mingshan Zhu, 2022. "Protruding Pt single-sites on hexagonal ZnIn2S4 to accelerate photocatalytic hydrogen evolution," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    16. Yang, Yang & Li, Jun & Yang, Yingrui & Lan, Linghan & Liu, Run & Fu, Qian & Zhang, Liang & Liao, Qiang & Zhu, Xun, 2022. "Gradient porous electrode-inducing bubble splitting for highly efficient hydrogen evolution," Applied Energy, Elsevier, vol. 307(C).
    17. Yanyan Fang & Cong Wei & Zenan Bian & Xuanwei Yin & Bo Liu & Zhaohui Liu & Peng Chi & Junxin Xiao & Wanjie Song & Shuwen Niu & Chongyang Tang & Jun Liu & Xiaolin Ge & Tongwen Xu & Gongming Wang, 2024. "Unveiling the nature of Pt-induced anti-deactivation of Ru for alkaline hydrogen oxidation reaction," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    18. Yuzhen Chen & Qiuhong Li & Yuxing Lin & Jiao Liu & Jing Pan & Jingguo Hu & Xiaoyong Xu, 2024. "Boosting oxygen evolution reaction by FeNi hydroxide-organic framework electrocatalyst toward alkaline water electrolyzer," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    19. Jie Xu & Gonglei Shao & Xuan Tang & Fang Lv & Haiyan Xiang & Changfei Jing & Song Liu & Sheng Dai & Yanguang Li & Jun Luo & Zhen Zhou, 2022. "Frenkel-defected monolayer MoS2 catalysts for efficient hydrogen evolution," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    20. Rui Yao & Kaian Sun & Kaiyang Zhang & Yun Wu & Yujie Du & Qiang Zhao & Guang Liu & Chen Chen & Yuhan Sun & Jinping Li, 2024. "Stable hydrogen evolution reaction at high current densities via designing the Ni single atoms and Ru nanoparticles linked by carbon bridges," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-44717-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.